X-ray powder diffraction data for Ba3MnSi2O8—A new phase in the system BaO–MnO–SiO2

1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.

2015 ◽  
Vol 30 (3) ◽  
pp. 293-293 ◽  
Author(s):  
Qing Wang ◽  
Ying Xiao ◽  
Jia Wei He ◽  
Hui Li

X-ray powder diffraction data for 3,3-dichloro-1-(4-nitrophenyl)-2-piperidinone, C11H10Cl2N2O3, are reported [a = 11.088(4) Å, b = 11.594(5) Å, c = 12.689(3) Å, α = 118.456(1)°, β = 100.320(3)°, γ = 107.763(3)°, V = 1259.27 Å3, Z = 4 and space group P-1 ]. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurities were observed.


2008 ◽  
Vol 23 (4) ◽  
pp. 356-359 ◽  
Author(s):  
B. Grushko ◽  
D. Pavlyuchkov

Ternary Al–Cu–Ir phases, isostructural to the Al–Cu–Rh ω and C2 phases, were found to be around the Al70Cu20Ir10 and Al60Cu15Ir25 compositions, respectively. Using powder X-ray diffraction, the former was found to have a tetragonal structure (space group P4/mnc) with a=6.4142(9) Å and c=14.842(4) Å, and the latter has a cubic structure (space group Fm3) with a=15.3928(6) Å.


1997 ◽  
Vol 12 (3) ◽  
pp. 134-135
Author(s):  
Liangqin Nong ◽  
Lingmin Zeng ◽  
Jianmin Hao

The compound DyNiSn has been studied by X-ray powder diffraction. The X-ray diffraction patterns for this compound at room temperature are reported. DyNiSn is orthorhombic with lattice parameters a=7.1018(1) Å, b=7.6599(2) Å, c=4.4461(2) Å, space group Pna21 and 4 formula units of DyNiSn in unit cell. The Smith and Snyder Figure-of-Merit F30 for this powder pattern is 26.7(0.0178,63).


Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


1994 ◽  
Vol 9 (3) ◽  
pp. 187-188 ◽  
Author(s):  
Hee-Lack Choi ◽  
Naoya Enomoto ◽  
Nobuo Ishizawa ◽  
Zenbe-e Nakagawa

X-ray powder diffraction data for Ti2O2(C2O4)(OH)2·H2O were obtained. The crystal system was determined to be orthorhombic with space group C2221. The unit cell parameters were refined to a = 1.0503(2) nm, b = 1.5509(3) nm, and c = 0.9700(1) nm.


2009 ◽  
Vol 24 (1) ◽  
pp. 29-31 ◽  
Author(s):  
B. Grushko

A monoclinic phase isostructural to Al4W was revealed in Al–Ni–Re close to the Al–Re terminal. It is assumed to be a ternary extension of the high-temperature Al4Re phase usually transforming in binary alloys even by sharp quenching from the existence temperatures. The powder X-ray diffraction pattern of this phase of the Al77Ni2.5Re20.5 composition was indexed for the Cm space group with a=5.1538(12) Å, b=17.410(5) Å, c=5.1546(15) Å, and β=100.548(16)°.


2015 ◽  
Vol 30 (4) ◽  
pp. 366-366 ◽  
Author(s):  
Qing Wang ◽  
Xin Nuo Xiong ◽  
Jia Wei He ◽  
Pei Xiao Tang ◽  
Hui Li

X-ray powder diffraction data for 1-(4-Nitrophenyl)-2-piperidinone, C11H12N2O3, are reported [a = 9.514(3) Å, b = 12.308(6) Å, c = 9.175(1) Å, α = 90°, β = 91.811(2)°, γ = 90°, V = 1073.94 Å3, Z = 4, ρcal = 1.362 g cm−3 and space group P21/n]. All measured lines were indexed and are consistent with the P21/n space group. No detectable impurities were observed.


1998 ◽  
Vol 13 (3) ◽  
pp. 134-135
Author(s):  
Fabrice Goubard ◽  
Samuel Llorente ◽  
Valérie Delobbe ◽  
Daniel Bizot ◽  
Jean Chassaing

X-ray diffraction experiments performed on the compounds FeIINbIVF6 and CoIINbIVF6 have shown that they crystallize in the rhombohedral system, space group R3¯ with a cationic ordering. Unit cell parameters were determined: a=5.4201(8) Å, c=14.072(2) Å, V=357.8(1) Å, Z=3 for FeNbF6, and a=5.351(2) Å, c=13.960(6) Å, V=346.2(2) Å, Z=3 for CoNbF6. Synthesis and powder diffraction data are reported.


2015 ◽  
Vol 30 (4) ◽  
pp. 367-367 ◽  
Author(s):  
Qing Wang ◽  
Ya Ping Li ◽  
Shan Shan Li ◽  
Bin Tang ◽  
Hui Li

X-ray powder diffraction data for 1-(4-aminophenyl)-5,6-dihydro-3-(4-morpholinyl)-2(1H)-pyridinone, C15H19N3O2, are reported [a = 14.877(4) Å, b = 5.893(6) Å, c = 18.984(3) Å, α = 90°, β = 122.298(3)°, γ = 90°, unit-cell volume V = 1406.86 Å3, Z = 4, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurities were observed.


2021 ◽  
pp. 1-3
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of varenicline hydrogen tartrate Form B (Chantix®) has been refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Varenicline hydrogen tartrate Form B crystallizes in space group P212121 (#19) with a = 7.07616(2), b = 7.78357(2), c = 29.86149(7) Å, V = 1644.706(6) Å3, and Z = 4. The hydrogen bonds were identified and quantified. Hydrogen bonds link the cations and anions in zig-zag chains along the b-axis. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


Sign in / Sign up

Export Citation Format

Share Document