Structural Determination of the Hydrofullerene C60D36 by Neutron Diffraction

1998 ◽  
Vol 54 (3) ◽  
pp. 345-350 ◽  
Author(s):  
L. E. Hall ◽  
D. R. McKenzie ◽  
R. L. Davis ◽  
M. I. Attalla ◽  
A. M. Vassallo

A mixture of C60D36 with 24.5 \pm 4.5% C60 by weight has been analysed by neutron diffraction techniques. The diffraction data was converted to a reduced density function G(r) by Fourier transformation. The C60 component of the G(r) was subtracted out. This enabled a comparison for five molecular models of C60D36, with symmetries T, Th , S 6 and two D 3 d isomers, with the experimental G(r). This specimen of C60D36 was found to be best described by a T symmetry isomer, in agreement with 13C NMR and IR data for C60H36 [Attalla et al. (1993). J. Phys. Chem. pp. 6329–6331].

2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Navjot Kaur ◽  
Atul Khanna ◽  
Alex C. Hannon

High real-space resolution neutron diffraction measurements up to 34 Å−1 were performed on a series of xCuO–(100 − x)TeO2 (x = 30, 40 and 50 mol%) glasses that were synthesized by the melt-quenching technique. The Fourier transformation of neutron diffraction structure factors was used to generate the pair distribution functions, with the first peak at 1.90 Å due to the overlapping Te–O and Cu–O atomic pairs. Reverse Monte Carlo (RMC) simulations were performed on the structure factors and the six partial atomic pair distributions of Cu–Cu, Cu–Te, Cu–O, Te–Te, Te–O and O–O were calculated. The Te–O and Cu–O distributions are very similar and asymmetrical, which revealed that there is a significant short-range disorder in the tellurite network due to the existence of a wide range of Te—O and Cu—O bond lengths. A high-Q (magnitude of momentum transfer function) neutron diffraction study revealed that the average Te–O coordination number decreases steadily from 3.45 to 3.18 with an increase in CuO concentration from 30 to 50 mol% in the glass network. Similar coordination number modifications were earlier found by the RMC analysis of neutron diffraction data sets of copper tellurite glasses that were performed up to lower Q maximum values of 9.5 Å−1. The comparison of high-Q and low-Q neutron diffraction studies reveals that RMC is a powerful and possibly the only technique that is available to elucidate the glass short-range and medium-range structural properties when diffraction data are available up to low Q values of, say, 9.5 Å−1, and when cation–oxygen bond lengths are strongly overlapping and cannot be resolved by Fourier transformation. In situ high-temperature (473 K) neutron diffraction studies of 50CuO–50TeO2 glass revealed that significant distortion of the tellurite network occurs with heating.


Author(s):  
Jason A. McNulty ◽  
Alexandra S. Gibbs ◽  
Philip Lightfoot ◽  
Finlay D. Morrison

The ambient-temperature structures (orthorhombic, space group Cmc21) of the polar hexagonal tungsten bronzes RbNbW2O9 and KNbW2O9 have been determined by high-resolution powder neutron diffraction. Displacement of the A-site cation along the polar c axis with concomitant octahedral tilting occurs to optimize the A cation bonding environment, hence reducing the coordination from 18 to 16. This effect is more evident in KNbW2O9 due to decreased A cation size. The octahedral tilting in both compositions results in a doubling of the c axis that has not previously been reported, highlighting the importance of neutron diffraction as a complementary technique for structural determination of such systems.


Sign in / Sign up

Export Citation Format

Share Document