scholarly journals Crystal structures oftrans-dichloridotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN3]iron(II),trans-dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN3]iron(II) andtrans-dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN3]iron(II) diethyl ether disolvate

2014 ◽  
Vol 70 (8) ◽  
pp. 72-76
Author(s):  
Roger Mafua ◽  
Titus Jenny ◽  
Gael Labat ◽  
Antonia Neels ◽  
Helen Stoeckli-Evans

The title compounds, [FeCl2(C15H20N2)4], (I), [FeBr2(C15H20N2)4], (II), and [FeBr2(C15H20N2)4]·2C4H10O, (IIb), respectively, all have triclinic symmetry, with (I) and (II) being isotypic. The FeIIatoms in each of the structures are located on an inversion center. They have octahedral FeX2N4(X= Cl and Br, respectively) coordination spheres with the FeIIatom coordinated by two halide ions in atransarrangement and by the tertiary N atom of four arylimidazole ligands [1-(2,6-diisopropylphenyl)-1H-imidazole] in the equatorial plane. In the two independent ligands, the benzene and imidazole rings are almost normal to one another, with dihedral angles of 88.19 (15) and 79.26 (14)° in (I), 87.0 (3) and 79.2 (3)° in (II), and 84.71 (11) and 80.58 (13)° in (IIb). The imidazole rings of the two independent ligand molecules are inclined to one another by 70.04 (15), 69.3 (3) and 61.55 (12)° in (I), (II) and (IIb), respectively, while the benzene rings are inclined to one another by 82.83 (13), 83.0 (2) and 88.16 (12)°, respectively. The various dihedral angles involving (IIb) differ slightly from those in (I) and (II), probably due to the close proximity of the diethyl ether solvent molecule. There are a number of C—H...halide hydrogen bonds in each molecule involving the CH groups of the imidazole units. In the structures of compounds (I) and (II), molecules are linkedviapairs of C—H...halogen hydrogen bonds, forming chains along theaaxis that encloseR22(12) ring motifs. The chains are linked by C—H...π interactions, forming sheets parallel to (001). In the structure of compound (IIb), molecules are linkedviapairs of C—H...halogen hydrogen bonds, forming chains along thebaxis, and the diethyl ether solvent molecules are attached to the chainsviaC—H...O hydrogen bonds. The chains are linked by C—H...π interactions, forming sheets parallel to (001). In (I) and (II), the methyl groups of an isopropyl group are disordered over two positions [occupancy ratio = 0.727 (13):0.273 (13) and 0.5:0.5, respectively]. In (IIb), one of the ethyl groups of the diethyl ether solvent molecule is disordered over two positions (occupancy ratio = 0.5:0.5).

2015 ◽  
Vol 71 (12) ◽  
pp. 1439-1443
Author(s):  
Henrik Klien ◽  
Wilhelm Seichter ◽  
Edwin Weber

In the title solvate, C44H26Cl4O2·3C6H15N, the asymmetric part of the unit cell comprises two halves of the diol molecules, 2,2′′-bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl, and three molecules of triethylamine,i. e. the diol molecules are located on crystallographic symmetry centres. Two of the solvent molecules are disordered over two positions [occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3)]. In the diol molecules, the outer rings of the 1,1′:4′,1′′-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05 (8) and 82.28 (8)°. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2′′ of the terphenyl moiety induces a `folded' geometry which is stabilized by intramolecular C—H...O hydrogen bonds and π–π stacking interactions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid–centroid distances = 3.559 (1) and 3.562 (1) Å]. The crystal is composed of 1:2 complex units, in which the solvent molecules are associated with the diol moleculesviaO—H...N hydrogen bonds, while the remaining solvent molecule is linked to the host by a C—H...N hydrogen bond. The given pattern of intermolecular interactions results in formation of chain structures extending along [010].


2018 ◽  
Vol 74 (12) ◽  
pp. 1808-1814
Author(s):  
Akshatha R. Salian ◽  
Sabine Foro ◽  
B. Thimme Gowda

Two (E)-N′-(p-substituted benzylidene)-4-chlorobenzenesulfonohydrazides, namely, (E)-4-chloro-N′-(4-chlorobenzylidene)benzenesulfonohydrazide, C13H10Cl2N2O2S, (I), and (E)-4-chloro-N′-(4-nitrobenzylidene)benzenesulfonohydrazide, C13H10ClN3O4S, (II), have been synthesized, characterized and their crystal structures studied to explore the effect of the nature of substituents on the structural parameters. Compound (II) crystallized with two independent molecules [(IIA) and IIB)] in the asymmetric unit. In both compounds, the configuration around the C=N bond is E. The molecules are twisted at the S atom with C—S—N—N torsion angles of −62.4 (2)° in (I), and −46.8 (2)° and 56.8 (2)° in the molecules A and B of (II). The 4-chlorophenylsulfonyl and 4-substituted benzylidene rings form dihedral angles of 81.0 (1)° in (I), 75.9 (1)° in (IIA) and 73.4 (1)° in (IIB). In the crystal of (I), molecules are linked via pairs of N—H...O hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C—Cl...π interactions, forming a three-dimensional structure. In the crystal of (II), molecules are linked by C—H...π interactions and N—H...O hydrogen bonds, forming –A–B–A–B– chains along the c-axis direction. The chains are linked via C—H...O and C—H...π interactions, forming layers parallel to the bc plane. Two-dimensional fingerprint plots show that the most significant contacts contributing to the Hirshfeld surface for (I) are H...H contacts (26.6%), followed by Cl...H/H...Cl (21.3%), O...H/H...O (15.5%) and Cl...C/C...Cl (10.7%), while for (II) the O...H/H...O contacts are dominant, with a contribution of 34.8%, followed by H...H (15.2%), C...H/H...C (14.0%) and Cl...H/H...Cl (10.0%) contacts.


Author(s):  
Inge Sänger ◽  
Hans-Wolfram Lerner ◽  
Michael Bolte

In the title salt, [Ag(C27H36N2)2]Cl·C4H8O, the AgIatom is coordinated by two 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene ligands. The imidazole rings are inclined to one another by 46.69 (13)° and the benzene rings in each ligand are almost normal to the imdazole ring to which they are attached, with dihedral angles varying from 82.39 (13) to 88.27 (12)°. There are C—H...π interactions present in the cation, involving the two ligands, and the solvent molecule is linked to the cationviaa C—H...O hydrogen bond. In the crystal, molecules are linked by trifurcated C—H...(Cl,Cl,Cl) hydrogen bonds, forming slabs parallel to (101). One isopropyl group is disordered over two sets of sites with an occupancy ratio of 0.447 (17):0.553 (17) and the THF molecule is disordered over two positions with an occupancy ratio of 0.589 (6):0.411 (6).


Author(s):  
Jian-Ping Zhao ◽  
Rui-Qin Liu ◽  
Zhi-Hao Jiang ◽  
Sheng-Di Bai

The asymmetric unit of the title compound, C15H16N2·C4H8O, contains two amidine molecules (AandB) with slightly different conformations and two tetrahydrofuran (THF) solvent molecules. In the amidine molecules, the dimethylphenyl ring and the NH2group lie to the same side of the N=C bond and the dihedral angles between the aromatic rings are 54.25 (7) (moleculeA) and 58.88 (6) ° (moleculeB). In the crystal, N—H...N hydrogen bonds link the amidine molecules into [100]C(4) chains of alternatingAandBmolecules. Both amidine molecules form an N—H...O hydrogen bond to an adjacent THF solvent molecule.


2014 ◽  
Vol 70 (6) ◽  
pp. o679-o679 ◽  
Author(s):  
Hakima Chicha ◽  
El Mostapha Rakib ◽  
Abdellah Hannioui ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-ethoxy group, respectively. In the crystal, molecules are connected by pairs of N—H...O hydrogen bonds into inversion dimers, which are further linked by π–π interactions between the diazole rings [intercentroid distance = 3.4946 (11) Å], forming chains parallel to [101].


Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title compounds,catena-poly[[[bis[(R)-propane-1,2-diamine-κ2N,N′]copper(II)]-μ-cyanido-κ2N:C-[tris(cyanido-κC)(nitroso-κN)iron(III)]-μ-cyanido-κ2C:N] monohydrate], {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n, (I), and poly[[hexa-μ-cyanido-κ12C:N-hexacyanido-κ6C-hexakis[(R)-propane-1,2-diamine-κ2N,N′]dichromium(III)tricopper(II)] pentahydrate], {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n, (II) [where Lpn = (R)-propane-1,2-diamine, C3H10N2], are new chiral cyanide-bridged bimetallic coordination polymers. The asymmetric unit of compound (I) is composed of two independent cation–anion units of {[Cu(Lpn)2][Fe(CN)5)(NO)]} and two water molecules. The FeIIIatoms have distorted octahedral geometries, while the CuIIatoms can be considered to be pentacoordinate. In the crystal, however, the units align to form zigzag cyanide-bridged chains propagating along [101]. Hence, the CuIIatoms have distorted octahedral coordination spheres with extremely long semicoordination Cu—N(cyanido) bridging bonds. The chains are linked by O—H...N and N—H...N hydrogen bonds, forming two-dimensional networks parallel to (010), and the networks are linkedviaN—H...O and N—H...N hydrogen bonds, forming a three-dimensional framework. Compound (II) is a two-dimensional cyanide-bridged coordination polymer. The asymmetric unit is composed of two chiral {[Cu(Lpn)2][Cr(CN)6]}−anions bridged by a chiral [Cu(Lpn)2]2+cation and five water molecules of crystallization. Both the CrIIIatoms and the central CuIIatom have distorted octahedral geometries. The coordination spheres of the outer CuIIatoms of the asymmetric unit can be considered to be pentacoordinate. In the crystal, these units are bridged by long semicoordination Cu—N(cyanide) bridging bonds forming a two-dimensional network, hence these CuIIatoms now have distorted octahedral geometries. The networks, which lie parallel to (10-1), are linkedviaO—H...O, O—H...N, N—H...O and N—H...N hydrogen bonds involving all five non-coordinating water molecules, the cyanide N atoms and the NH2groups of the Lpn ligands, forming a three-dimensional framework.


2014 ◽  
Vol 70 (5) ◽  
pp. o621-o621
Author(s):  
Yizhen Li ◽  
Pu Mao ◽  
Yongmei Xiao ◽  
Liangru Yang ◽  
Lingbo Qu

In the title compound, C30H25N3O3, the central imidazole ring forms dihedral angles of 77.34 (6), 12.56 (6) and 87.04 (6)°, respectively, with theo-nitrobenzene ring and the phenyl substituents in the 5- and 4-positions. The molecular conformation is stabilized by weak intramolecular C—H...π interactions. In the crystal, molecules are linked by O—H...N hydrogen bonds, forming chains running parallel to theb-axis direction.


2016 ◽  
Vol 72 (10) ◽  
pp. 1503-1508
Author(s):  
Miguel Ángel Claudio-Catalán ◽  
Felipe Medrano ◽  
Hugo Tlahuext ◽  
Carolina Godoy-Alcántar

The asymmetric unit of the title compound, C56H50N6O8S2·3C6H4Cl2, contains two half-molecules of the parent,AandB, which both have crystallographic inversion symmetry, together with three 2,3-dichlorobenzene molecules of solvation. MoleculesAandBare conformationally similar, with dihedral angles between the central naphthalenediimide ring and the peripheral naphthalene and benzyl rings of 2.43 (7), 81.87 (7)° (A) and 3.95 (7), 84.88 (7)° (B), respectively. The conformations are stabilized by the presence of intramolecular π–π interactions between the naphthalene ring and the six-membered diimide ring of the central naphthalenediimide moiety, with ring centroid-to-centroid distances of 3.5795 (8) Å (A) and 3.5640 (8) Å (B). In the crystal, C—H...O hydrogen bonds link the molecules into infinite supramolecular chains along thecaxis. These chains are interconnected through C—H...π and offset π–π interactions, generating supramolecular nanotubes which are filled by 1,2-dichlorobenzene molecules.


Author(s):  
Ying Liang ◽  
Li-Qiao Shi ◽  
Zi-Wen Yang

In the title compound, C19H13ClF2N2O2, the conformation of the N—H bond in the amide segment isantito the C=O bond. The molecule is not planar, with dihedral angles between the central benzene ring and the outer benzene and pyridyl rings of 73.35 (7) and 81.26 (6)°, respectively. A weak intramolecular C—H...O hydrogen bond occurs. In the crystal, N—H...N, C—H...O and C—H...F hydrogen bonds lead to the formation of dimers. The N—H...N inversion dimers are linked by π–π contacts between adjacent pyridine rings [centroid–centroid = 3.8541 (12) Å] and C—H...π interactions. These contacts combine to stack the molecules along theaaxis.


2015 ◽  
Vol 71 (8) ◽  
pp. m152-m153 ◽  
Author(s):  
Liubov M. Lifshits ◽  
Charles Campana ◽  
Jeremy K. Klosterman

The structure of the polymeric title compound, {[Zn2(C20H11NO4)2(C3H7NO)2(CH3OH)]·C3H7NO}n, comprises carbazolylisophthalate moieties connecting dimetallic tetracarboxylate zinc secondary building units (SBUs) parallel to [100] and [010], leading to a layer-like arrangement parallel to (001). Each SBU consists of two Zn atoms in slightly distorted tetrahedral and octahedral coordination environments [Zn...Zn = 3.5953 (6) Å]. Three carboxylate groups bridge the two Zn atoms in a μ2-O:O′ mode, whereas the fourth coordinates through a single carboxylate O atom (μ1-O). The O atoms of two dimethylformamide (DMF) and one methanol molecule complete the Zn coordination spheres. The methanol ligand interacts with the noncoordinating DMF moleculeviaan O—H...O hydrogen bond of medium strength. Carbazoles between the layers interdigitate through weak C—H....π interactions to form a laminar solid stacked along [010]. Two kinds of C—H...π interactions are present, both with a distance of 2.64 Å, between the H atoms and the centroids, and a third C—H...π interaction, where the aromatic H atom is located above the carbazole N-atom lone pair (H...N = 2.89 Å). Several C—H...O interactions occur between the coordinating DMF molecule, the DMF solvent molecule, and ligating carboxylate O atoms.


Sign in / Sign up

Export Citation Format

Share Document