An accurate projection model for diffraction image formation and inversion using a polychromatic cone beam

2015 ◽  
Vol 48 (2) ◽  
pp. 334-343 ◽  
Author(s):  
Wim van Aarle ◽  
Wolfgang Ludwig ◽  
Andrew King ◽  
Dayakar Penumadu

Recently, the concept of X-ray diffraction contrast tomography (DCT) has been extended to the case of more widely available laboratory source CT systems. Using well known concepts from geometrical ray optics, an exact formulation is derived for the forward and backward projection geometry encountered under polychromatic cone beam illumination, and it is shown how this projection model can be efficiently implemented in practice. The new projection model is subsequently used for iterative tomographic reconstruction of the three-dimensional shape of a grain from a set of experimentally observed cone beam projections and shows a clear improvement compared to the simplified projection model used previously.

2006 ◽  
Vol 37 (4) ◽  
pp. 583
Author(s):  
Michael McGowan

This article examines the relatively new fields of colour and shape trade marks. It was initially feared by some academics that the new marks would encroach on the realms of patent and copyright.  However, the traditional requirements of trade mark law, such as functionality and descriptiveness, have meant that trade marks in colour and shape are extremely hard to acquire if they do not have factual distinctiveness. As colour and shape trade marks have no special restrictions, it is proposed that the combination trade mark theory and analysis from the Diamond T case should be used as a way to make them more accessible. The combination analysis can be easily applied because every product has a three dimensional shape and a fourth dimension of colour.


2017 ◽  
Author(s):  
Tatsuya Kitamura ◽  
Hironori Takemoto ◽  
Hisanori Makinae ◽  
Tetsutaro Yamaguchi ◽  
Kotaro Maki

i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


Sign in / Sign up

Export Citation Format

Share Document