pore structures
Recently Published Documents


TOTAL DOCUMENTS

821
(FIVE YEARS 250)

H-INDEX

55
(FIVE YEARS 10)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122354
Author(s):  
Fei Gao ◽  
Ji Xia ◽  
Rui-jie Sun ◽  
Ya-fei Shan ◽  
Zhe Jia
Keyword(s):  
Flue Gas ◽  

2022 ◽  
Vol 6 (1) ◽  
pp. 40
Author(s):  
Lei Wang ◽  
Xiao Lu ◽  
Lisheng Liu ◽  
Jie Xiao ◽  
Ge Zhang ◽  
...  

Currently, low heat Portland (LHP) cement is widely used in mass concrete structures. The magnesia expansion agent (MgO) can be adopted to reduce the shrinkage of conventional Portland cement-based materials, but very few studies can be found that investigate the influence of MgO on the properties of LHP cement-based materials. In this study, the influences of two types of MgO on the hydration, as well as the shrinkage behavior of LHP cement-based materials, were studied via pore structural and fractal analysis. The results indicate: (1) The addition of reactive MgO (with a reactivity of 50 s and shortened as M50 thereafter) not only extends the induction stage of LHP cement by about 1–2 h, but also slightly increases the hydration heat. In contrast, the addition of weak reactive MgO (with a reactivity of 300 s and shortened as M300 thereafter) could not prolong the induction stage of LHP cement. (2) The addition of 4 wt.%–8 wt.% MgO (by weight of binder) lowers the mechanical property of LHP concrete. Higher dosages of MgO and stronger reactivity lead to a larger reduction in mechanical properties at all of the hydration times studied. M300 favors the strength improvement of LHP concrete at later ages. (3) M50 effectively compensates the shrinkage of LHP concrete at a much earlier time than M300, whereas M300 compensates the long-term shrinkage more effectively than M50. Thus, M300 with an optimal dosage of 8 wt.% is suggested to be applied in mass LHP concrete structures. (4) The addition of M50 obviously refines the pore structures of LHP concrete at 7 days, whereas M300 starts to refine the pore structure at around 60 days. At 360 days, the concretes containing M300 exhibits much finer pore structures than those containing M50. (5) Fractal dimension is closely correlated with the pore structure of LHP concrete. Both pore structure and fractal dimension exhibit weak (or no) correlations with shrinkage of LHP concrete.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chaohui Lyu ◽  
Liguo Zhong ◽  
Zhengfu Ning ◽  
Qing Wang ◽  
David R. Cole

Pore structures with rich nanopores and permeability in tight gas reservoirs are poorly understood up to date. Advanced techniques are needed to be employed to accurately characterize pore structures, especially tiny pores which include micron and nanopores. In this study, various experimental techniques such as scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) T 2 , nitrogen adsorption method, and NMR cryoporometry (NMRC) are combined to interrogate the complex pore systems of the tight gas reservoir in the Linxing formation, Ordos Basin, China. Results show that tight gas sandstones are primarily comprised of residual interparticle and clay-dominated pores. Clay and quartz are two dominate minerals while pyrite occupies a nontrivial amount as well. The permeability of tight gas sandstones is very low, exhibiting an extremely poor positive correlation with porosity. While pore types and relative pore contents are more influential factors on the permeability, accurate characterization of pore size distribution is critical for the permeability of tight gas sandstones. Therefore, complementary characterization methods are carried out, indicating that neither small pores with radii < 100   nm (around peak 1 in NMR T 2 distribution) nor large pores with radii > 5   μ m (around peak 3 in NMR T 2 distribution) control the permeability by analyzing the connectivity of the pores in various size ranges, but rather pores averaging approximately 350 ± X   nm (around peak 2 in NMR T 2 distribution) have sufficient connectivity to host and transmit hydrocarbons. The pore size of tight gas sandstones is dominated by the clay-rich mineral assemblage. The study shows that the NMRC technique can be a very promising method, especially when referred to as a promising “roadmap” on how to interrogate tight formations such as the tight gas sands or even shale especially for the nanopore characterization.


Sign in / Sign up

Export Citation Format

Share Document