scholarly journals Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

2015 ◽  
Vol 22 (3) ◽  
pp. 621-625 ◽  
Author(s):  
Joshua J. Turner ◽  
Georgi L. Dakovski ◽  
Matthias C. Hoffmann ◽  
Harold Y. Hwang ◽  
Alex Zarem ◽  
...  

This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm−1electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

Author(s):  
E. Hemsing ◽  
G. Marcus ◽  
W. M. Fawley ◽  
R. W. Schoenlein ◽  
R. Coffee ◽  
...  

2017 ◽  
Author(s):  
Diling Zhu ◽  
Yanwen Sun ◽  
Donald W. Schafer ◽  
Hongliang Shi ◽  
Justin H. James ◽  
...  

2014 ◽  
Vol 369 (1647) ◽  
pp. 20130500 ◽  
Author(s):  
Bill Pedrini ◽  
Ching-Ju Tsai ◽  
Guido Capitani ◽  
Celestino Padeste ◽  
Mark S. Hunter ◽  
...  

Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution.


2012 ◽  
Vol 100 (12) ◽  
pp. 121107 ◽  
Author(s):  
S. Schorb ◽  
T. Gorkhover ◽  
J. P. Cryan ◽  
J. M. Glownia ◽  
M. R. Bionta ◽  
...  

2015 ◽  
Vol 22 (3) ◽  
pp. 577-583 ◽  
Author(s):  
Gabriel Blaj ◽  
Pietro Caragiulo ◽  
Gabriella Carini ◽  
Sebastian Carron ◽  
Angelo Dragone ◽  
...  

Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.


2015 ◽  
Vol 22 (3) ◽  
pp. 612-620 ◽  
Author(s):  
Roberto Alonso-Mori ◽  
Dimosthenis Sokaras ◽  
Diling Zhu ◽  
Thomas Kroll ◽  
Mathieu Chollet ◽  
...  

X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.


2016 ◽  
Vol 23 (2) ◽  
pp. 425-429 ◽  
Author(s):  
Philip Heimann ◽  
Michael MacDonald ◽  
Bob Nagler ◽  
Hae Ja Lee ◽  
Eric Galtier ◽  
...  

The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. The X-ray focus was also determined by the ablation imprint method.


Sign in / Sign up

Export Citation Format

Share Document