linac coherent light source
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 35)

H-INDEX

36
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
A. E. Gleason ◽  
D. R. Rittman ◽  
C. A. Bolme ◽  
E. Galtier ◽  
H. J. Lee ◽  
...  

AbstractRecent discoveries of water-rich Neptune-like exoplanets require a more detailed understanding of the phase diagram of H2O at pressure–temperature conditions relevant to their planetary interiors. The unusual non-dipolar magnetic fields of ice giant planets, produced by convecting liquid ionic water, are influenced by exotic high-pressure states of H2O—yet the structure of ice in this state is challenging to determine experimentally. Here we present X-ray diffraction evidence of a body-centered cubic (BCC) structured H2O ice at 200 GPa and ~ 5000 K, deemed ice XIX, using the X-ray Free Electron Laser of the Linac Coherent Light Source to probe the structure of the oxygen sub-lattice during dynamic compression. Although several cubic or orthorhombic structures have been predicted to be the stable structure at these conditions, we show this BCC ice phase is stable to multi-Mbar pressures and temperatures near the melt boundary. This suggests variable and increased electrical conductivity to greater depths in ice giant planets that may promote the generation of multipolar magnetic fields.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. G. Burdet ◽  
V. Esposito ◽  
M. H. Seaberg ◽  
C. H. Yoon ◽  
J. J. Turner

AbstractX-ray photon fluctuation spectroscopy using a two-pulse mode at the Linac Coherent Light Source has great potential for the study of quantum fluctuations in materials as it allows for exploration of low-energy physics. However, the complexity of the data analysis and interpretation still prevent recovering real-time results during an experiment, and can even complicate post-analysis processes. This is particularly true for high-spatial resolution applications using CCDs with small pixels, which can decrease the photon mapping accuracy resulting from the large electron cloud generation at the detector. Droplet algorithms endeavor to restore accurate photon maps, but the results can be altered by their hyper-parameters. We present numerical modeling tools through extensive simulations that mimic previous x-ray photon fluctuation spectroscopy experiments. By modification of a fast droplet algorithm, our results demonstrate how to optimize the precise parameters that lift the intrinsic counting degeneracy impeding accuracy in extracting the speckle contrast. These results allow for an absolute determination of the summed contrast from multi-pulse x-ray speckle diffraction, the modus operandi by which the correlation time for spontaneous fluctuations can be measured.


2021 ◽  
Vol 77 (a1) ◽  
pp. a208-a208
Author(s):  
Andrew Aquila ◽  
Mark Hunter ◽  
Alex Batyuk ◽  
David Fritz ◽  
Mengning Liang

Author(s):  
F. Zhou ◽  
C. Adolphsen ◽  
A. Benwell ◽  
G. Brown ◽  
D. H. Dowell ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5157
Author(s):  
Victor Tkachenko ◽  
Malik M. Abdullah ◽  
Zoltan Jurek ◽  
Nikita Medvedev ◽  
Vladimir Lipp ◽  
...  

In this work, we analyze the application of X-ray diffraction imaging techniques to follow ultrafast structural transitions in solid materials using the example of an X-ray pump–X-ray probe experiment with a single-crystal silicon performed at a Linac Coherent Light Source. Due to the spatially non-uniform profile of the X-ray beam, the diffractive signal recorded in this experiment included contributions from crystal parts experiencing different fluences from the peak fluence down to zero. With our theoretical model, we could identify specific processes contributing to the silicon melting in those crystal regions, i.e., the non-thermal and thermal melting whose occurrences depended on the locally absorbed X-ray doses. We then constructed the total volume-integrated signal by summing up the coherent signal contributions (amplitudes) from the various crystal regions and found that this significantly differed from the signals obtained for a few selected uniform fluence values, including the peak fluence. This shows that the diffraction imaging signal obtained for a structurally damaged material after an impact of a non-uniform X-ray pump pulse cannot be always interpreted as the material’s response to a pulse of a specific (e.g., peak) fluence as it is sometimes believed. This observation has to be taken into account in planning and interpreting future experiments investigating structural changes in materials with X-ray diffraction imaging.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
A. M. Kalitenko

A numerical study of the effect of betatron oscillations on the second harmonic generation in free-electron lasers (FELs) is presented. Analytical expressions for the effective coupling strength factors are derived that clearly distinguish all contributions in subharmonics and each polarization of the radiation. A three-dimensional time-dependent numerical FEL code that takes into account the main FEL effects and the individual contribution of each electron to the second harmonic generation is presented. Also, the X- and Y-polarizations of the second harmonic are analyzed. The second harmonic was detected in experiments at the Advanced Photon Source (APS) Low Energy Undulator Test Line (LEUTL) and Linac Coherent Light Source (LCLS) in the soft X-ray regime. The approach presented in the article can be useful for a comprehensive study and diagnostics of XFELs. In the paper, the LCLS and Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) experiments are modeled. The simulation results are in a good agreement with the experimental data.


2021 ◽  
Vol 118 (13) ◽  
pp. e2020486118
Author(s):  
Ji-Hye Yun ◽  
Xuanxuan Li ◽  
Jianing Yue ◽  
Jae-Hyun Park ◽  
Zeyu Jin ◽  
...  

Chloride ion–pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl− into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation–diffusion process upon light-triggered retinal isomerization.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Haoyuan Li ◽  
Reza Nazari ◽  
Brian Abbey ◽  
Roberto Alvarez ◽  
Andrew Aquila ◽  
...  

AbstractSingle Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 μm x 1.7 μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Egor Marin ◽  
Aleksandra Luginina ◽  
Anastasiia Gusach ◽  
Kirill Kovalev ◽  
Sergey Bukhdruker ◽  
...  

AbstractStructural studies of challenging targets such as G protein-coupled receptors (GPCRs) have accelerated during the last several years due to the development of new approaches, including small-wedge and serial crystallography. Here, we describe the deposition of seven datasets consisting of X-ray diffraction images acquired from lipidic cubic phase (LCP) grown microcrystals of two human GPCRs, Cysteinyl leukotriene receptors 1 and 2 (CysLT1R and CysLT2R), in complex with various antagonists. Five datasets were collected using small-wedge synchrotron crystallography (SWSX) at the European Synchrotron Radiation Facility with multiple crystals under cryo-conditions. Two datasets were collected using X-ray free electron laser (XFEL) serial femtosecond crystallography (SFX) at the Linac Coherent Light Source, with microcrystals delivered at room temperature into the beam within LCP matrix by a viscous media microextrusion injector. All seven datasets have been deposited in the open-access databases Zenodo and CXIDB. Here, we describe sample preparation and annotate crystallization conditions for each partial and full datasets. We also document full processing pipelines and provide wrapper scripts for SWSX and SFX data processing.A Correction to this paper has been published: https://doi.org/10.1038/s41597-020-00759-w


Sign in / Sign up

Export Citation Format

Share Document