scholarly journals Conformational aspects of polymorphs and phases of 2-propyl-1H-benzimidazole

IUCrJ ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 706-715 ◽  
Author(s):  
Fco. Javier Zuñiga ◽  
Aurora J. Cruz-Cabeza ◽  
Xabier M. Aretxabaleta ◽  
Noelia de la Pinta ◽  
Tomasz Breczewski ◽  
...  

This paper reports on the polymorphism of 2-propyl-1H-benzimidazole (2PrBzIm) induced by temperature change. Upon heating, an irreversible reconstructive-type phase transition at T = 384 K from the ordered form I (P212121) to a new polymorph, form II HT (Pcam), was observed. The structural transformation between forms I and II involves significant changes in the crystal packing, as well as a key conformational variation around the propyl chain of the molecule. After the first irreversible phase transition, the II HT form undergoes two further (reversible) phase transitions upon cooling at 361 K (II RT) and 181 K (II LT). All three phases (forms II HT, II RT and II LT) have almost identical crystal packing and, given the reversibility of the conversions as a function of temperature, they are referred to as form II temperature phases. They differ, however, with respect to conformational variations around the propyl chain of 2PrBzIm. Energy calculations of the gas-phase conformational energy landscape of this compound about its flexible bonds allowed us to classify the observed conformational variations of all forms into changes and adjustments of conformers. This reveals that forms I and II are related by conformational change, and that two of the form II phases (HT and RT) are related by conformational adjustment, whilst the other two (RT and LT) are related by conformational change. We introduce the term `conformational phases' for different crystal phases with almost identical packing but showing changes in conformation.

2017 ◽  
Vol 73 (8) ◽  
pp. 1255-1258
Author(s):  
Lipiao Bao ◽  
Marilyn M. Olmstead

The crystal structure determination based on 90 K data of the title imine ligand, C18H10ClNO, revealed non-merohedral twinning with three twin domains. In our experience, this is an indication of an ordering phase transition. Consequently, the structure was redetermined with higher temperature data, and a reversible phase transition was discovered. The higher temperature phase is indeed an ordered structure. At the higher temperature, the 4-chlorophenyl group has rotated by ca 7° into a crystallographic mirror plane. Warming the crystal from 90 K to 250 K changes the space group from triclinic P-1, to monoclinic P21/m. Diverse non-classical interactions are present in the crystal packing, and these are described for the phase change reported in this work. The crystal structure of the title imine ligand, measured at 100 K, has been reported on previously [Kovach et al. (2011). J. Mol. Struct. 992, 33–38].


1988 ◽  
Vol 53 (12) ◽  
pp. 2995-3013
Author(s):  
Emerich Erdös ◽  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma

For a quantitative description of the epitaxial growth rate of gallium arsenide, two models are proposed including two rate controlling steps, namely the diffusion of components in the gas phase and the surface reaction. In the models considered, the surface reaction involves a reaction triple - or quadruple centre. In both models three mechanisms are considered which differ one from the other by different adsorption - and impact interaction of reacting particles. In every of the six cases, the pertinent rate equations were derived, and the models have been confronted with the experimentally found dependences of the growth rate on partial pressures of components in the feed. The results are discussed with regard to the plausibility of individual mechanisms and of both models, and also with respect to their applicability and the direction of further investigations.


2003 ◽  
Vol 32 (11) ◽  
pp. 1002-1003 ◽  
Author(s):  
Seiji Watase ◽  
Takayuki Kitamura ◽  
Nobuko Kanehisa ◽  
Masami Nakamoto ◽  
Yasushi Kai ◽  
...  

2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


Sign in / Sign up

Export Citation Format

Share Document