state luminescence
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 57)

H-INDEX

31
(FIVE YEARS 6)

Author(s):  
Rachel Crespo-Otero ◽  
Alex Aziz ◽  
Amir Sidat ◽  
Priyesh Talati

Luminescent molecular crystals have gained significant research interest for optoelectronic applications. However, fully understanding their structural and electronic relationships in the condensed phase and under external stimuli remains a significant...


2022 ◽  
Vol 1248 ◽  
pp. 131503
Author(s):  
Anastasiia M. Afanasenko ◽  
Danil V. Krutin ◽  
Artur E. Taishev ◽  
Alexander S. Novikov ◽  
Tatiana G. Chulkova ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6942
Author(s):  
Monica-Cornelia Sardaru ◽  
Narcisa Laura Marangoci ◽  
Sergiu Shova ◽  
Dana Bejan

A series of neutral mononuclear lanthanide complexes [Ln(HL)2(NO3)3] (Ln = La, Ce, Nd, Eu, Gd, Dy, Ho) with rigid bidentate ligand, HL (4′-(1H-imidazol-1-yl)biphenyl-4-carboxylic acid) were synthesized under solvothermal conditions. The coordination compounds have been characterized by infrared spectroscopy, thermogravimetry, powder X-ray diffraction and elemental analysis. According to X-ray diffraction, all the complexes are a series of isostructural compounds crystallized in the P2/n monoclinic space group. Additionally, solid-state luminescence measurements of all complexes show that [Eu(HL)2(NO3)3] complex displays the characteristic emission peaks of Eu(III) ion at 593, 597, 615, and 651 nm.


2021 ◽  
Vol 9 ◽  
Author(s):  
Minhui Chen ◽  
Juan Wei ◽  
Yufeng Zhang ◽  
Lin Wu ◽  
Leibo Tan ◽  
...  

Triarylboranes have drawn much attention in OLEDs owing to their remarkable solid-state luminescence properties. Here two new A-D-A type compounds, 2,7-bis(dimesitylboryl)-N-ethyl-carbazole (BCz) using triarylborane as electron acceptor and carbazole as electron donor while 2,7-bis((4-(dimesitylboryl)phenyl)ethynyl)-9-ethyl-carbazole (BPACz) using phenylacetylene as extra conjugated bridge, have been synthesized and their photoluminescence related properties in various states have been investigated both experimentally and theoretically. Both compounds show blue emission with high quantum yields, being potential candidates for blue OLED materials.


Inorganics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 74
Author(s):  
Franz A. Mautner ◽  
Florian Bierbaumer ◽  
Roland C. Fischer ◽  
Ana Torvisco ◽  
Ramon Vicente ◽  
...  

Ten mononuclear rare earth complexes of formula [La(btfa)3(H2O)2] (1), [La(btfa)3(4,4′-Mt2bipy)] (2), [La(btfa)3(4,4′-Me2bipy)2] (3), [La(btfa)3(5,5′-Me2bipy)2] (4), [La(btfa)3(terpy)] (5), [La(btfa)3(phen)(EtOH)] (6), [La(btfa)3(4,4′-Me2bipy)(EtOH)] (7), [La(btfa)3(2-benzpy)(MeOH)] (8), [Tb(btfa)3(4,4′-Me2bipy)] (9) and (Hpy)[Eu(btfa)4] (10), where btfa = 4,4,4-trifuoro-1-phenylbutane-1,3-dionato anion, 4,4′-Mt2bipy = 4,4′-dimethoxy-2,2′-bipyridine, 4,4′-Me2bipy = 4,4′-dimethyl-2,2′-bipyridine, 5,5′-Me2bipy = 5,5′-dimethyl-2,2′-bipyridine, terpy = 2,2′:6′,2′-terpyridine, phen = 1,10-phenathroline, 2-benzpy = 2-(2-pyridyl)benzimidazole, Hpy = pyridiniumH+ cation) have been synthesized and structurally characterized. The complexes display coordination numbers (CN) eight for 1, 2, 9, 10, nine for 5, 6, 7, 8 and ten for 3 and 4. The solid-state luminescence spectra of Tb-9 and Eu-10 complexes showed the same characteristic bands predicted from the Tb(III) and Eu(III) ions. The Overall Quantum Yield measured (ϕTOT) at the excitation wavelength of 371 nm for both compounds yielded 1.04% for 9 and up to 34.56% for 10.


2021 ◽  
Author(s):  
Thomas Delouche ◽  
Ghizlene Taifour ◽  
Marie cordier ◽  
Thierry Roisnel ◽  
Denis Tondelier ◽  
...  

We report the straightforward synthesis of Si-containing PAHs. The impact of pi-extension and exocyclic modifications on both the optical and redox properties is investigated using a joint experimental/theoretical approach. By taking advantage of the solid-state luminescence of these derivatives, electroluminescent devices are prepared. Such preliminary optoelectronic results highlight that these heteroatom-containing PAHs are promising building blocks for organic electronics.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5044
Author(s):  
Hua-Qun Zhou ◽  
Sai-Li Zheng ◽  
Can-Min Wu ◽  
Xin-He Ye ◽  
Wei-Ming Liao ◽  
...  

A novel Zn(II) metal-organic framework [Zn4O(C30H12F4O4S8)3]n, namely ZnBPD-4F4TS, has been constructed from a fluoro- and thiophenethio-functionalized ligand 2,2′,5,5′-tetrafluoro-3,3′,6,6′-tetrakis(2-thiophenethio)-4,4′-biphenyl dicarboxylic acid (H2BPD-4F4TS). ZnBPD-4F4TS shows a broad green emission around 520 nm in solid state luminescence, with a Commission International De L’Eclairage (CIE) coordinate at x = 0.264, y = 0.403. Since d10-configured Zn(II) is electrochemically inert, its photoluminescence is likely ascribed to ligand-based luminescence which originates from the well-conjugated system of phenyl and thiophenethio moieties. Its luminescent intensities diminish to different extents when exposed to various metal ions, indicating its potential as an optical sensor for detecting metal ion species. Furthermore, ZnBPD-4F4TS and its NH4Br-loaded composite, NH4Br@ZnBPD-4F4TS, were used for proton conduction measurements in different relative humidity (RH) levels and temperatures. Original ZnBPD-4F4TS shows a low proton conductivity of 9.47 × 10−10 S cm−1 while NH4Br@ZnBPD-4F4TS shows a more than 25,000-fold enhanced value of 2.38 × 10−5 S cm−1 at 40 °C and 90% RH. Both of the proton transport processes in ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS belong to the Grotthuss mechanism with Ea = 0.40 and 0.32 eV, respectively.


Sign in / Sign up

Export Citation Format

Share Document