conformational variations
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Szymon W. Manka ◽  
Wenjuan Zhang ◽  
Adam Wenborn ◽  
Jemma Betts ◽  
Susan Joiner ◽  
...  

Mammalian prions are lethal infectious agents that propagate as distinct strains and are composed of multichain assemblies of misfolded host-encoded prion protein (PrP), often referred to as prion rods. The structural features that define infectious prion rods and the molecular determinants of prion strain diversity are poorly understood. Here, we present a near-atomic resolution cryo-EM structure of PrP fibrils present in highly infectious prion rod preparations isolated from the brains of RML prion-infected mice. We found that prion rods comprise single-protofilament helical amyloid fibrils that coexist with twisted pairs of the same protofilaments. Each rung of the protofilament is formed by a single PrP monomer with the ordered core comprising PrP residues 94-225, which folds to create two asymmetric lobes with the N-linked glycans and the glycosylphosphatidylinositol anchor projecting from the C-terminal lobe. The overall architecture is comparable to that of recently reported PrP fibrils isolated from the brain of hamsters infected with the 263K prion strain. However, there are marked conformational variations that could result from differences in PrP primary sequence and/or represent distinguishing features of the distinct prion strains. These conformational changes impact the overall geometry of the fibrils and may also impact fibril pairing, one or both of which may critically influence PrP glycoform selection that occurs during strain-specific prion propagation.


Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 37
Author(s):  
Tatiana Zolotoukhina ◽  
Momoko Yamada ◽  
Shingo Iwakura

Surface-enhanced Raman scattering (SERS) nanoprobes have shown tremendous potential in in vivo imaging. The development of single oligomer resolution in the SERS promotes experiments on DNA and protein identification using SERS as a nanobiosensor. As Raman scanners rely on a multiple spectrum acquisition, faster imaging in real-time is required. SERS weak signal requires averaging of the acquired spectra that erases information on conformation and interaction. To build spectral libraries, the simulation of measurement conditions and conformational variations for the nucleotides relative to enhancer nanostructures would be desirable. In the molecular dynamic (MD) model of a sensing system, we simulate vibrational spectra of the cytosine nucleotide in FF2/FF3 potential in the dynamic interaction with the Au20 nanoparticles (NP) (EAM potential). Fourier transfer of the density of states (DOS) was performed to obtain the spectra of bonds in reaction coordinates for nucleotides at a resolution of 20 to 40 cm−1. The Au20 was optimized by ab initio density functional theory with generalized gradient approximation (DFT GGA) and relaxed by MD. The optimal localization of nucleotide vs. NP was defined and the spectral modes of both components vs. interaction studied. Bond-dependent spectral maps of nucleotide and NP have shown response to interaction. The marker frequencies of the Au20—nucleotide interaction have been evaluated.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 25
Author(s):  
Tatiana Zolotoukhina ◽  
Momoko Yamada ◽  
Shingo Iwakura

Surface-enhanced Raman scattering (SERS) nanoprobes have shown tremendous potential in in vivo imaging. The development of single oligomer resolution in the SERS promotes experiments on DNA and protein identification using SERS as a nanobiosensor. As Raman scanners rely on a multiple spectrum acquisition, the faster imaging in real-time is required. SERS weak signal requires averaging of the acquired spectra that erases information on conformation and interaction. To build spectral libraries, the simulation of measurement conditions and conformational variations for the nucleotides relative to enhancer nanostructures would be desirable. In the molecular dynamic (MD) model of a sensing system, we simulate vibrational spectra of the cytosine nucleotide in FF2/FF3 potential in the dynamic interaction with the Au20 nanoparticles (NP) (EAM potential). Fourier transfer of the density of states (DOS) was performed to obtain the spectra of bonds in reaction coordinates for nucleotides at a resolution 20 to 40 cm−1. The Au20 was optimized by ab initio DFT GGA and relaxed by MD. The optimal localization of nucleotide vs. NP was defined and spectral modes of both components vs. interaction studied. Bond-dependent spectral maps of nucleotide and NP have shown response to interaction. The marker frequencies of the Au20—nucleotide interaction have been evaluated.


2020 ◽  
Author(s):  
Didac Martí ◽  
Juan Torras ◽  
Oscar Betran ◽  
Pau Turon ◽  
Carlos Alemán

AbstractRecent studies have shown that SARS-CoV-2 virus can be inactivated by effect of heat, even though, little is known about the molecular changes induced by the temperature. Here, we unravel the basics of such inactivation mechanism over the SARS-CoV-2 spike glycoprotein by executing atomistic molecular dynamics simulations. Both the closed down and open up states, which determine the accessibility to the receptor binding domain, were considered. Results suggest that the spike undergoes drastic changes in the topology of the hydrogen bond network while salt bridges are mainly preserved. Reorganization in the hydrogen bonds structure produces conformational variations in the receptor binding subunit and explain the thermal inactivation of the virus. Conversely, the macrostructure of the spike is preserved at high temperature because of the retained salt bridges. The proposed mechanism has important implications for engineering new approaches to inactivate the SARS-CoV-2 virus.


Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 503
Author(s):  
Corazon Ericka Mae M. Itang ◽  
Jokent T. Gaza ◽  
Dan Jethro M. Masacupan ◽  
Dessa Camille R. Batoctoy ◽  
Yu-Ju Chen ◽  
...  

Marine cone snails belonging to the Conidae family make use of neuroactive peptides in their venom to capture prey. Here we report the proteome profile of the venom duct of Conus eburneus, a cone snail belonging to the Tesseliconus clade. Through tandem mass spectrometry and database searching against the C. eburneus transcriptome and the ConoServer database, we identified 24 unique conopeptide sequences in the venom duct. The majority of these peptides belong to the T and M gene superfamilies and are disulfide-bonded, with cysteine frameworks V, XIV, VI/VII, and III being the most abundant. All seven of the Cys-free peptides are conomarphin variants belonging to the M superfamily that eluted out as dominant peaks in the chromatogram. These conomarphins vary not only in amino acid residues in select positions along the backbone but also have one or more post-translational modifications (PTMs) such as proline hydroxylation, C-term amidation, and γ-carboxylation of glutamic acid. Using molecular dynamics simulations, the conomarphin variants were predicted to predominantly have hairpin-like or elongated structures in acidic pH. These two structures were found to have significant differences in electrostatic properties and the inclusion of PTMs seems to complement this disparity. The presence of polar PTMs (hydroxyproline and γ-carboxyglutamic acid) also appear to stabilize hydrogen bond networks in these conformations. Furthermore, these predicted structures are pH sensitive, becoming more spherical and compact at higher pH. The subtle conformational variations observed here might play an important role in the selection and binding of the peptides to their molecular targets.


Author(s):  
Sarah Wazir ◽  
Mirko M. Maksimainen ◽  
Lari Lehtiö

MacroD2 is one of the three human macrodomain proteins characterized by their protein-linked mono-ADP-ribosyl-hydrolyzing activity. MacroD2 is a single-domain protein that contains a deep ADP-ribose-binding groove. In this study, new crystallization conditions for MacroD2 were found and three crystal structures of human MacroD2 in the apo state were solved in space groups P41212, P43212 and P43, and refined at 1.75, 1.90 and 1.70 Å resolution, respectively. Structural comparison of the apo crystal structures with the previously reported crystal structure of MacroD2 in complex with ADP-ribose revealed conformational changes in the side chains of Val101, Ile189 and Phe224 induced by the binding of ADP-ribose in the active site. These conformational variations may potentially facilitate design efforts of a MacroD2 inhibitor.


2020 ◽  
Vol 49 (12) ◽  
pp. 3796-3808
Author(s):  
Jay C. Amicangelo ◽  
Willem R. Leenstra

Zirconium phosph(on)ates containing naphthalene moieties have been synthesized and in one compound, conformational variations with 2-methylnaphthyl groups result in distinct resonances in the solid state 31P NMR spectrum.


2019 ◽  
Vol 116 (41) ◽  
pp. 20462-20471 ◽  
Author(s):  
Hyunwook Lee ◽  
Heather M. Callaway ◽  
Javier O. Cifuente ◽  
Carol M. Bator ◽  
Colin R. Parrish ◽  
...  

Canine parvovirus (CPV) is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Cross-species transmission of CPV occurs as a result of mutations on the viral capsid surface that alter the species-specific binding to the host receptor, transferrin receptor type-1 (TfR). The interaction between CPV and TfR has been extensively studied, and previous analyses have suggested that the CPV–TfR complex is asymmetric. To enhance the understanding of the underlying molecular mechanisms, we determined the CPV–TfR interaction using cryo-electron microscopy to solve the icosahedral (3.0-Å resolution) and asymmetric (5.0-Å resolution) complex structures. Structural analyses revealed conformational variations of the TfR molecules relative to the binding site, which translated into dynamic molecular interactions between CPV and TfR. The precise footprint of the receptor on the virus capsid was identified, along with the identity of the amino acid residues in the virus–receptor interface. Our “rock-and-roll” model provides an explanation for previous findings and gives insights into species jumping and the variation in host ranges associated with new pandemics in dogs.


ACS Omega ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 2217-2224
Author(s):  
Praveen Chakravarthi Veeraragavulu ◽  
Nanda Kumar Yellapu ◽  
Sireesha Yerrathota ◽  
Pradeepkiran Jangampalli Adi ◽  
Bhaskar Matcha

Sign in / Sign up

Export Citation Format

Share Document