Two new isomeric zinc(II) metal–organic frameworks based on 1,5-bis(2-methyl-1H-imidazol-1-yl)pentane and 5-methylisophthalate ligands

2017 ◽  
Vol 73 (2) ◽  
pp. 78-83
Author(s):  
Xiong-Wen Tan ◽  
Heng-Feng Li ◽  
Chang-Hong Li

Many factors, such as temperature, solvent, the central metal atom and the type of coligands, may affect the nature of metal–organic frameworks (MOFs) and the framework formation in the self-assembly process, which results in the complexity of these compounds and the uncertainty of their structures. Two new isomeric ZnIImetal–organic frameworks (MOFs) based on mixed ligands, namely, poly[[μ-1,5-bis(2-methyl-1H-imidazol-1-yl)pentane-κ2N3:N3′](μ-5-methylisophthalato-κ2O1:O3)zinc(II)], [Zn(C9H6O4)(C13H20N4)]n, (I), and poly[[μ-1,5-bis(2-methyl-1H-imidazol-1-yl)pentane-κ2N3:N3′](μ3-5-methylisophthalato-κ3O1:O1′:O3)(μ3-5-methylisophthalato-κ4O1:O1′:O3,O3′)dizinc(II)], [Zn2(C9H6O4)2(C13H20N4)]n, (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis. Complex (I) displays a two-dimensional layer net, while complex (II) exhibits a twofold interpenetrating three-dimensional framework. Both complexes show high stability and good fluorescence in the solid state at room temperature.

2020 ◽  
Vol 76 (5) ◽  
pp. 398-404
Author(s):  
Zhong-Xuan Xu ◽  
Chun-Yan Ou ◽  
Chun-Xue Zhang

Two three-dimensional cobalt-based metal–organic frameworks with 5-(hydroxymethyl)isophthalic acid (H2HIPA), namely poly[[μ2-1,4-bis(2-methyl-1H-imidazol-1-yl)benzene-κ2 N 3:N 3′][μ2-5-(hydroxymethyl)isophthalato-κ2 O 1:O 3]cobalt(II)], [Co(C9H6O5)(C14H14N4)] n (1), and poly[tris[μ2-1,4-bis(1H-imidazol-1-yl)benzene-κ2 N 3:N 3′]bis[μ3-5-(hydroxymethyl)isophthalato-κ2 O 1:O 3:O 5]dicobalt(II)], [Co2(C9H6O5)2(C12H10N4)3] n (2), were synthesized under similar hydrothermal conditions. Single-crystal X-ray diffraction analyses revealed that 5-(hydroxymethyl)isophthalate (HIPA2−) and 1,4-bis(2-methyl-1H-imidazol-1-yl)benzene (1,4-BMIB) are simple linkers connecting cobalt centres to build a fourfold interpenetration dia framework in complex 1. However, complex 2 is a pillared-layer framework with a (3,6)-connected network constructed by 1,4-bis(1H-imidazol-1-yl)benzene (1,4-DIB) linkers, 3-connected HIPA2− ligands and 6-connected CoII centres. The above significant structural differences can be ascribed to the introduction of the different auxiliary N-donor ligands. Moreover, UV–Vis spectroscopy and Mott–Schottky measurements confirmed that complexes 1 and 2 are typical n-type semiconductors.


2018 ◽  
Vol 74 (4) ◽  
pp. 418-423 ◽  
Author(s):  
Yan-Yan An ◽  
Li-Ping Lu ◽  
Miao-Li Zhu

The design and synthesis of coordination polymers (CPs) have attracted much interest due to the intriguing diversity of their architectures and topologies. The functional solid catena-poly[μ2-aqua-triaqua{μ4-5-[4-carboxyphenoxy)methyl]benzene-1,3-dicarboxylato}{μ3-5-[4-carboxyphenoxy)methyl]benzene-1,3-dicarboxylato}dicobalt(II)], [Co2(C16H10O7)2(H2O)4] n or [Co2(HL)2(μ2-H2O)(H2O)3] n , was synthesized successfully by self-assembly of CoII ions with 5-[(4-carboxyphenoxy)methyl]isophthalic acid (H3 L). The title compound was obtained under hydrothermal conditions and exhibits a twofold interpenetrated three-dimensional skeleton with hms 3,5-conn topology according to the cluster representation for valence-bonded metal–organic frameworks (MOFs). It has been characterized by single-crystal X-ray diffraction, IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis and susceptibility measurements. The antiferromagnetic coupling between adjacent CoII centres occurs via superexchange through the ligands.


2015 ◽  
Vol 68 (8) ◽  
pp. 1299 ◽  
Author(s):  
Haiyan Liu ◽  
Xufeng Meng ◽  
Lihui Zhang ◽  
Anqiang Jia

Under urothermal conditions, the self-assembly of ZnII ions, 1,2,3-triazole, and two isomeric dicarboxylate ligands (1,4-H2ndc and 2,6-H2ndc) afforded two new metal–organic frameworks, namely [Zn(1,4-ndc)0.5(taz)]n·n(e-urea) (1) and [Zn(2,6-ndc)0.5(taz)]n·n(H2O)·n(e-urea) (2) (1,4-H2ndc = 1,4-naphthalenedicarboxylic acid; 2,6-H2ndc = 2,6-naphthalenedicarboxylic acid; Htaz = 1,2,4-triazole; e-urea = ethyleneurea), which were further determined by single-crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction analyses, and IR spectra. Compound 1 features a 3D pillar-layered framework with 6-connected pcu topology (pcu = α-Po), and compound 2 also features a 3D pillar-layered framework with 6-connected pcu topology. In addition, the thermal stabilities and solid-state photoluminescent properties of compounds 1 and 2 were also studied.


Author(s):  
Yanwen Sun ◽  
Zhen Chen ◽  
Xiaozhong Wang ◽  
Lei Wang ◽  
Xue Yang ◽  
...  

Multidentate carboxylate ligands have been widely used in the construction of metal–organic frameworks (MOFs) owing to the rich variety of their coordination modes, which can lead to crystalline products with interesting structures and properties. Two new main-group MOFs, namely, poly[[di-μ-aqua-diaqua(dimethylformamide)[μ7-5,5′-methylenebis(2,4,6-trimethylbenzene-1,3-dicarboxylato)]dibarium(II)] trihydrate], {[Ba2(C23H20O8)(C3H7NO)(H2O)4]·3H2O} n or {[Ba2(BTMIPA)(DMF)(H2O)4]·3H2O} n (1), and poly[[diaqua[μ6-5,5′-methylenebis(2,4,6-trimethylbenzene-1,3-dicarboxylato)]dilead(II)] 2.5-hydrate], {[Pb2(C23H20O8)(H2O)2]·2.5H2O} n or {[Pb2(BTMIPA)(H2O)2]·2.5H2O} n (2), were prepared by the self-assembly of metal salts with the semi-rigid tetracarboxylic acid ligand 5,5′-methylenebis(2,4,6-trimethylisophthalic acid) (H4BTMIPA). Both structures were characterized by elemental analysis (EA), single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectroscopy and thermogravimetric analysis (TGA). Complex 1 reveals a three-dimensional (3D) flu network formed via bridging tetranuclear secondary building units (SBUs) and complex 2 displays a 3D framework with an sqp topology based on one-dimensional metal chains. The BTMIPA4− ligands adopt a rare coordination mode in 2, although the ligands in both 1 and 2 are X-shaped. The luminescence properties of both complexes were investigated in the solid state.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Xie ◽  
Jie Wu ◽  
Xiaochun Hang ◽  
Honghai Zhang ◽  
Kang shen ◽  
...  

By employment of amino-functionalized dicarboxylate ligands to react with d10 metal ions, four novel metal-organic frameworks (MOFs) were obtained with the formula of {[Cd(BCPAB)(μ2-H2O)]}n (1), {[Cd(BDAB)]∙2H2O∙DMF}n (2), {[Zn(BDAB)(BPD)0.5(H2O)]∙2H2O}n (3) and {[Zn(BDAB)(DBPB)0.5(H2O)]∙2H2O}n (4) (H2BCPAB = 2,5-bis(p-carbonylphenyl)-1-aminobenzene; H2BDAB = 1,2-diamino-3,6-bis(4-carboxyphenyl)benzene); BPD = (4,4′-bipyridine); DBPB = (E,E-2,5-dimethoxy-1,4-bis-[2-pyridin-vinyl]-benzene; DMF = N,N-dimethylformamide). Complex 1 is a three-dimensional (3D) framework bearing seh-3,5-Pbca nets with point symbol of {4.62}{4.67.82}. Complex 2 exhibits a 4,4-connected new topology that has never been reported before with point symbol of {42.84}. Complex 3 and 4 are quite similar in structure and both have 3D supramolecular frameworks formed by 6-fold and 8-fold interpenetrated 2D coordination layers. The structures of these complexes were characterized by single crystal X-ray diffraction (SC-XRD), thermal gravimetric analysis (TGA) and powder X-ray diffraction (PXRD) measurements. In addition, the fluorescence properties and the sensing capability of 2–4 were investigated as well and the results indicated that complex 2 could function as sensor for Cu2+ and complex 3 could detect Cu2+ and Ag+via quenching effect.


2018 ◽  
Vol 74 (8) ◽  
pp. 889-893
Author(s):  
Qian-Kun Zhou ◽  
Lin Wang ◽  
Dong Liu

As a class of multifunctional materials, crystalline supramolecular complexes have attracted much attention because of their unique architectures, intriguing topologies and potential applications. In this article, a new supramolecular compound, namely catena-poly[4,4′-(buta-1,3-diene-1,4-diyl)dipyridin-1-ium [(μ4-benzene-1,2,4,5-tetracarboxylato-κ6 O 1,O 1′:O 2:O 4,O 4′:O 5)cadmium(II)]], {(C14H14N2)[Cd(C10H2O8)]} n or {(1,4-H2bpbd)[Cd(1,2,4,5-btc)]} n , has been prepared by the self-assembly of Cd(NO3)2·4H2O, benzene-1,2,4,5-tetracarboxylic acid (1,2,4,5-H4btc) and 1,4-bis(pyridin-4-yl)buta-1,3-diene (1,4-bpbd) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. Each CdII centre is coordinated by six O atoms from four different (1,2,4,5-btc)4− tetraanions. Each CdII cation, located on a site of twofold symmetry, binds to four carboxylate groups belonging to four separate (1,2,4,5-btc)4− ligands. Each (1,2,4,5-btc)4− anion, situated on a position of \overline{1} symmetry, binds to four crystallographically equivalent CdII centres. Neighbouring CdII cations interconnect bridging (1,2,4,5-btc)4− anions to form a three-dimensional {[Cd(1,2,4,5-btc)]2−} n anionic coordination network with infinite tubular channels. The channels are visible in both the [1\overline{1}0] and the [001] direction. Such a coordination network can be simplified as a (4,4)-connected framework with the point symbol (4284)(4284). To balance the negative charge of the metal–carboxylate coordination network, the cavities of the network are occupied by protonated (1,4-H2bpbd)2+ cations that are located on sites of twofold symmetry. In the crystal, there are strong hydrogen-bonding interactions between the anionic coordination network and the (1,4-H2bpbd)2+ cations. Considering the hydrogen-bonding interactions, the structure can be further regarded as a three-dimensional (4,6)-connected supramolecular architecture with the point symbol (4264)(42687·84). The thermal stability and photoluminescence properties of the title compound have been investigated.


2018 ◽  
Vol 74 (9) ◽  
pp. 1053-1057 ◽  
Author(s):  
Qian-Kun Zhou ◽  
Lin Wang ◽  
Yun Xu ◽  
Ni-Ya Li

In recent years, coordination polymers constructed from multidentate carboxylate and pyridyl ligands have attracted much attention because these ligands can adopt a rich variety of coordination modes and thus lead to the formation of crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[μ2-1,6-bis(pyridin-3-yl)-1,3,5-hexatriene-κ2 N:N′](μ3-naphthalene-1,4-dicarboxylato-κ4 O 1,O 1′:O 4:O 4′)zinc(II)], [Zn(C12H6O4)(C16H14N2)] n , has been prepared by the self-assembly of Zn(NO3)2·6H2O, naphthalene-1,4-dicarboxylic acid (1,4-H2ndc) and 1,6-bis(pyridin-3-yl)-1,3,5-hexatriene (3,3′-bphte) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. Each ZnII ion is six-coordinated by four O atoms from three 1,4-ndc2− ligands and by two N atoms from two 3,3′-bphte ligands, forming a distorted octahedral ZnO4N2 coordination geometry. Pairs of ZnII ions are linked by 1,4-ndc2− ligands, leading to the formation of a two-dimensional square lattice (sql) layer extending in the ab plane. In the crystal, adjacent layers are further connected by 3,3′-bphte bridges, generating a three-dimensional architecture. From a topological viewpoint, if each dinuclear zinc unit is considered as a 6-connected node and the 1,4-ndc2− and 3,3′-bphte ligands are regarded as linkers, the structure can be simplified as a unique three-dimensional 6-connected framework with the point symbol 446108. The thermal stability and solid-state photoluminescence properties have also been investigated.


2013 ◽  
Vol 68 (7) ◽  
pp. 778-788 ◽  
Author(s):  
Xiu-Li Wang ◽  
Na Li ◽  
Ai-Xiang Tian ◽  
Jun Ying ◽  
Guo-Cheng Liu ◽  
...  

Three Keggin-based metal-organic frameworks (MOFs) containing multi-nuclear silver subunits, [Ag7(ptz)5(H2O)2][H2SiMo12O40] (1), [Ag8(ptz)5(H2O)2][AsW12O40] (2) and [Ag7(ptz)5(H2O)][HAsMo12O40] (3) (ptzH=5-(4-pyridyl)-tetrazole), have been synthesized under hydrothermal conditions by changing the inorganic polyanions. The new compounds have been characterized by elemental analyses, TG analyses, IR spectroscopy, and single-crystal X-ray diffraction. In compound 1, the multi-nuclear Ag5(ptz)5 subunits are interconnected to form chains, which are further linked by AgI cations to construct a 3D MOF with large channels. Pairs of SiMo12O404- polyanions reside in the channels as penta-dentate inorganic ligands. In 2, six AgI cations link five ptz- anions to construct a hexa-nuclear subunit [Ag6(ptz)5]+, which is interconnected to form chains. These chains are further linked by AgI cations to construct a 3D MOF, where AsW12O403- polyanions reside as hexa-dentate ligands. Compound 3exhibits a 3D MOF based on Ag5(ptz)5 subunits, in which the hexa-dentate AsMo12O403- polyanions are incorporated. The rigid tetrazole-based ligand ptz- plays an important role in the formation of the multi-nuclear subunits of the title compounds. The electrochemical properties of compound 1and the photocatalytic properties of compounds 1and 3have been investigated.


2020 ◽  
Vol 76 (2) ◽  
pp. 148-158
Author(s):  
Fang-Hua Zhao ◽  
Zhong-Lin Li ◽  
Shu-Fang Zhang ◽  
Jian-Hui Han ◽  
Mei Zhang ◽  
...  

Two new metal–organic frameworks (MOFs), namely, three-dimensional poly[diaquabis{μ2-1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene}bis(μ2-glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O} n or {[Ni2(Glu)2(1,4-mbix)2(H2O)2]·H2O} n , (I), and two-dimensional poly[[{μ2-1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene}(μ2-glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O} n or {[Zn(Glu)(1,4-mbix)]·4H2O} n (II), have been synthesized hydrothermally using glutarate (Glu2−) mixed with 1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene (1,4-mbix), and characterized by single-crystal X-ray diffraction, IR and UV–Vis spectroscopy, powder X-ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF (I) shows a 4-connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF (II) displays a two-dimensional 44-sql network with one-dimensional water chains penetrating the grids along the c direction. The solid-state photoluminescence analysis of (II) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O7 2− ions in aqueous solution.


2017 ◽  
Vol 72 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Sheng-Chun Chen ◽  
Feng Tian ◽  
Ming-Yang He ◽  
Qun Chen

AbstractTwo isostructural fluorinated metal-organic frameworks, formulated as [M2(Fbix)(1,4-NDC)2]n (M=Cd for 1 and Mn for 2), were synthesized by employing 1,4-naphthalenedicarboxylic acid (1,4-H2NDC) and the flexible fluorinated ligand 2,3,5,6-tetrafluoro-1,4-bis(imidazole-1-yl-methyl)benzene (Fbix) under hydrothermal conditions. Their structures were determined by single-crystal X-ray diffraction and further characterized by infrared spectroscopy, powder X-ray diffraction, and thermogravimetric analyses. Structure analyses have revealed that compounds 1 and 2 show an unusual hex net based on infinite rod-shaped secondary building units. The solid-state fluorescence spectra of 1 and 2 were measured and indicate a ligand-based emission for both complexes.


Sign in / Sign up

Export Citation Format

Share Document