Two isostructural fluorinated metal-organic frameworks with rare rod-packing architecture: syntheses, structures and luminescent properties

2017 ◽  
Vol 72 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Sheng-Chun Chen ◽  
Feng Tian ◽  
Ming-Yang He ◽  
Qun Chen

AbstractTwo isostructural fluorinated metal-organic frameworks, formulated as [M2(Fbix)(1,4-NDC)2]n (M=Cd for 1 and Mn for 2), were synthesized by employing 1,4-naphthalenedicarboxylic acid (1,4-H2NDC) and the flexible fluorinated ligand 2,3,5,6-tetrafluoro-1,4-bis(imidazole-1-yl-methyl)benzene (Fbix) under hydrothermal conditions. Their structures were determined by single-crystal X-ray diffraction and further characterized by infrared spectroscopy, powder X-ray diffraction, and thermogravimetric analyses. Structure analyses have revealed that compounds 1 and 2 show an unusual hex net based on infinite rod-shaped secondary building units. The solid-state fluorescence spectra of 1 and 2 were measured and indicate a ligand-based emission for both complexes.

2016 ◽  
Vol 40 (12) ◽  
pp. 763-766
Author(s):  
Sheng-Chun Chen ◽  
Feng Tian ◽  
Ming-Yang He ◽  
Qun Chen

Two isostructural fluorinated metal-organic frameworks [M(Fbix)(ox)]n (where M = Zn or Mn, Fbix = 2,3,5,6-tetrafluoro-1,4-bis(imidazole-1-yl-methyl)benzene, ox = oxalate) have been synthesised from Fbix and oxamide under hydrothermal conditions, where oxalate is generated by the in situ hydrolysation of oxamide. The complexes are isostructural and display similar two-dimensional undulating sql nets formed by pillaring the one-dimensional [M(ox)]n chains through Fbix linkers. Their solid-state fluorescence spectra indicate a ligand-based emission for both complexes.


2021 ◽  
Author(s):  
Qing-Xia Yao ◽  
Miaomiao Tian ◽  
Jun Zheng ◽  
Jintang Xue ◽  
Xuze Pan ◽  
...  

A series of microporous Ln(III)-based metal-organic frameworks (1-Ln) have been hydrothermally synthesized by using 4,4',4''-nitrilotribenzoic acid (H3NTB). Single crystal X-ray diffraction analyses show 1-Ln are isostructural and have 3D porous...


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2955
Author(s):  
Rory Elliott ◽  
Aoife A. Ryan ◽  
Aviral Aggarwal ◽  
Nianyong Zhu ◽  
Friedrich W. Steuber ◽  
...  

Metal-organic frameworks (MOFs) encompass a rapidly expanding class of materials with diverse potential applications including gas storage, molecular separation, sensing and catalysis. So-called ‘rod MOFs’, which comprise infinitely extended 1D secondary building units (SBUs), represent an underexplored subclass of MOF. Further, porphyrins are considered privileged ligands for MOF synthesis due to their tunable redox and photophysical properties. In this study, the CuII complex of 5,15-bis(4-carboxyphenyl)-10,20-diphenylporphyrin (H2L-CuII, where H2 refers to the ligand’s carboxyl H atoms) is used to prepare two new 2D porphyrinic rod MOFs PROD-1 and PROD-2. Single-crystal X-ray analysis reveals that these frameworks feature 1D MnII- or CoII-based rod-like SBUs that are coordinated by labile solvent molecules and photoactive porphyrin moieties. Both materials were characterised using infrared (IR) spectroscopy, powder X-ray diffraction (PXRD) spectroscopy and thermogravimetric analysis (TGA). The structural attributes of PROD-1 and PROD-2 render them promising materials for future photocatalytic investigations.


2013 ◽  
Vol 68 (7) ◽  
pp. 778-788 ◽  
Author(s):  
Xiu-Li Wang ◽  
Na Li ◽  
Ai-Xiang Tian ◽  
Jun Ying ◽  
Guo-Cheng Liu ◽  
...  

Three Keggin-based metal-organic frameworks (MOFs) containing multi-nuclear silver subunits, [Ag7(ptz)5(H2O)2][H2SiMo12O40] (1), [Ag8(ptz)5(H2O)2][AsW12O40] (2) and [Ag7(ptz)5(H2O)][HAsMo12O40] (3) (ptzH=5-(4-pyridyl)-tetrazole), have been synthesized under hydrothermal conditions by changing the inorganic polyanions. The new compounds have been characterized by elemental analyses, TG analyses, IR spectroscopy, and single-crystal X-ray diffraction. In compound 1, the multi-nuclear Ag5(ptz)5 subunits are interconnected to form chains, which are further linked by AgI cations to construct a 3D MOF with large channels. Pairs of SiMo12O404- polyanions reside in the channels as penta-dentate inorganic ligands. In 2, six AgI cations link five ptz- anions to construct a hexa-nuclear subunit [Ag6(ptz)5]+, which is interconnected to form chains. These chains are further linked by AgI cations to construct a 3D MOF, where AsW12O403- polyanions reside as hexa-dentate ligands. Compound 3exhibits a 3D MOF based on Ag5(ptz)5 subunits, in which the hexa-dentate AsMo12O403- polyanions are incorporated. The rigid tetrazole-based ligand ptz- plays an important role in the formation of the multi-nuclear subunits of the title compounds. The electrochemical properties of compound 1and the photocatalytic properties of compounds 1and 3have been investigated.


2020 ◽  
Vol 76 (2) ◽  
pp. 148-158
Author(s):  
Fang-Hua Zhao ◽  
Zhong-Lin Li ◽  
Shu-Fang Zhang ◽  
Jian-Hui Han ◽  
Mei Zhang ◽  
...  

Two new metal–organic frameworks (MOFs), namely, three-dimensional poly[diaquabis{μ2-1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene}bis(μ2-glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O} n or {[Ni2(Glu)2(1,4-mbix)2(H2O)2]·H2O} n , (I), and two-dimensional poly[[{μ2-1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene}(μ2-glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O} n or {[Zn(Glu)(1,4-mbix)]·4H2O} n (II), have been synthesized hydrothermally using glutarate (Glu2−) mixed with 1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene (1,4-mbix), and characterized by single-crystal X-ray diffraction, IR and UV–Vis spectroscopy, powder X-ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF (I) shows a 4-connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF (II) displays a two-dimensional 44-sql network with one-dimensional water chains penetrating the grids along the c direction. The solid-state photoluminescence analysis of (II) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O7 2− ions in aqueous solution.


2020 ◽  
Vol 76 (5) ◽  
pp. 398-404
Author(s):  
Zhong-Xuan Xu ◽  
Chun-Yan Ou ◽  
Chun-Xue Zhang

Two three-dimensional cobalt-based metal–organic frameworks with 5-(hydroxymethyl)isophthalic acid (H2HIPA), namely poly[[μ2-1,4-bis(2-methyl-1H-imidazol-1-yl)benzene-κ2 N 3:N 3′][μ2-5-(hydroxymethyl)isophthalato-κ2 O 1:O 3]cobalt(II)], [Co(C9H6O5)(C14H14N4)] n (1), and poly[tris[μ2-1,4-bis(1H-imidazol-1-yl)benzene-κ2 N 3:N 3′]bis[μ3-5-(hydroxymethyl)isophthalato-κ2 O 1:O 3:O 5]dicobalt(II)], [Co2(C9H6O5)2(C12H10N4)3] n (2), were synthesized under similar hydrothermal conditions. Single-crystal X-ray diffraction analyses revealed that 5-(hydroxymethyl)isophthalate (HIPA2−) and 1,4-bis(2-methyl-1H-imidazol-1-yl)benzene (1,4-BMIB) are simple linkers connecting cobalt centres to build a fourfold interpenetration dia framework in complex 1. However, complex 2 is a pillared-layer framework with a (3,6)-connected network constructed by 1,4-bis(1H-imidazol-1-yl)benzene (1,4-DIB) linkers, 3-connected HIPA2− ligands and 6-connected CoII centres. The above significant structural differences can be ascribed to the introduction of the different auxiliary N-donor ligands. Moreover, UV–Vis spectroscopy and Mott–Schottky measurements confirmed that complexes 1 and 2 are typical n-type semiconductors.


2017 ◽  
Vol 73 (2) ◽  
pp. 78-83
Author(s):  
Xiong-Wen Tan ◽  
Heng-Feng Li ◽  
Chang-Hong Li

Many factors, such as temperature, solvent, the central metal atom and the type of coligands, may affect the nature of metal–organic frameworks (MOFs) and the framework formation in the self-assembly process, which results in the complexity of these compounds and the uncertainty of their structures. Two new isomeric ZnIImetal–organic frameworks (MOFs) based on mixed ligands, namely, poly[[μ-1,5-bis(2-methyl-1H-imidazol-1-yl)pentane-κ2N3:N3′](μ-5-methylisophthalato-κ2O1:O3)zinc(II)], [Zn(C9H6O4)(C13H20N4)]n, (I), and poly[[μ-1,5-bis(2-methyl-1H-imidazol-1-yl)pentane-κ2N3:N3′](μ3-5-methylisophthalato-κ3O1:O1′:O3)(μ3-5-methylisophthalato-κ4O1:O1′:O3,O3′)dizinc(II)], [Zn2(C9H6O4)2(C13H20N4)]n, (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis. Complex (I) displays a two-dimensional layer net, while complex (II) exhibits a twofold interpenetrating three-dimensional framework. Both complexes show high stability and good fluorescence in the solid state at room temperature.


2018 ◽  
Vol 74 (4) ◽  
pp. 418-423 ◽  
Author(s):  
Yan-Yan An ◽  
Li-Ping Lu ◽  
Miao-Li Zhu

The design and synthesis of coordination polymers (CPs) have attracted much interest due to the intriguing diversity of their architectures and topologies. The functional solid catena-poly[μ2-aqua-triaqua{μ4-5-[4-carboxyphenoxy)methyl]benzene-1,3-dicarboxylato}{μ3-5-[4-carboxyphenoxy)methyl]benzene-1,3-dicarboxylato}dicobalt(II)], [Co2(C16H10O7)2(H2O)4] n or [Co2(HL)2(μ2-H2O)(H2O)3] n , was synthesized successfully by self-assembly of CoII ions with 5-[(4-carboxyphenoxy)methyl]isophthalic acid (H3 L). The title compound was obtained under hydrothermal conditions and exhibits a twofold interpenetrated three-dimensional skeleton with hms 3,5-conn topology according to the cluster representation for valence-bonded metal–organic frameworks (MOFs). It has been characterized by single-crystal X-ray diffraction, IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis and susceptibility measurements. The antiferromagnetic coupling between adjacent CoII centres occurs via superexchange through the ligands.


2015 ◽  
Vol 68 (8) ◽  
pp. 1299 ◽  
Author(s):  
Haiyan Liu ◽  
Xufeng Meng ◽  
Lihui Zhang ◽  
Anqiang Jia

Under urothermal conditions, the self-assembly of ZnII ions, 1,2,3-triazole, and two isomeric dicarboxylate ligands (1,4-H2ndc and 2,6-H2ndc) afforded two new metal–organic frameworks, namely [Zn(1,4-ndc)0.5(taz)]n·n(e-urea) (1) and [Zn(2,6-ndc)0.5(taz)]n·n(H2O)·n(e-urea) (2) (1,4-H2ndc = 1,4-naphthalenedicarboxylic acid; 2,6-H2ndc = 2,6-naphthalenedicarboxylic acid; Htaz = 1,2,4-triazole; e-urea = ethyleneurea), which were further determined by single-crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction analyses, and IR spectra. Compound 1 features a 3D pillar-layered framework with 6-connected pcu topology (pcu = α-Po), and compound 2 also features a 3D pillar-layered framework with 6-connected pcu topology. In addition, the thermal stabilities and solid-state photoluminescent properties of compounds 1 and 2 were also studied.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1375
Author(s):  
Pavel A. Demakov ◽  
Alena A. Vasileva ◽  
Vladimir A. Lazarenko ◽  
Alexey A. Ryadun ◽  
Vladimir P. Fedin

Four new gadolinium(III) metal-organic frameworks containing 2,2’-bipyridyl (bpy) or 1,10-phenanthroline (phen) chelate ligands and trans-1,4-cyclohexanedicarboxylate (chdc2–) were synthesized. Their crystal structures were determined by single-crystal X-ray diffraction analysis. All four coordination frameworks are based on the binuclear carboxylate building units. In the compounds [Gd2(bpy)2(chdc)3]·H2O (1) and [Gd2(phen)2(chdc)3]·0.5DMF (2), the six-connected {Ln2(L)2(OOCR)6} blocks form a 3D network with the primitive cubic (pcu) topology. In the compounds [Gd2(NO3)2(phen)2(chdc)2]·2DMF (3) and [Gd2Cl2(phen)2(chdc)2]∙0.3DMF∙2.2dioxane (4), the four-connected {Ln2(L)2(X)2OOCR)4} units (where X = NO3– for 3 or Cl– for 4) form a 2D square-grid (sql) network. The solid-state luminescent properties were investigated for the synthesized frameworks. Bpy-containing compound 1 shows no luminescence, possibly due to the paramagnetic quenching by Gd3+ cation. In contrast, the phenathroline-containing MOFs 2–4 possess yellow emission under visible excitation (λex = 460 nm) with the tuning of the characteristic wavelength by the coordination environment of the metal center.


Sign in / Sign up

Export Citation Format

Share Document