A new two-dimensional CdII coordination polymer based on 1,3-bis(2-methyl-1H-imidazol-1-yl)benzene and 1,3-phenylenediacetic acid: synthesis, crystal structure and physical properties

2018 ◽  
Vol 74 (12) ◽  
pp. 1576-1580 ◽  
Author(s):  
Ning-Ning Chen ◽  
Jian-Ning Ni ◽  
Jun Wang

A novel two-dimensional CdII coordination framework, poly[[[μ-1,3-bis(2-methyl-1H-imidazol-1-yl)benzene-κ2 N:N′](μ-1,3-phenylenediacetato-κ4 O,O′:O′′,O′′′)cadmium(II)] dihydrate], {[Cd(C10H8O4)(C14H14N4)]·2H2O} n or {[Cd(PDA)(1,3-BMIB)]·2H2O} n [1,3-BMIB is 1,3-bis(2-methyl-1H-imidazol-1-yl)benzene and H2PDA is 1,3-phenylenediacetic acid], has been prepared and characterized using IR, elemental analysis, thermal analysis and single-crystal X-ray diffraction, the latter revealing that the compound is a (4,4) grid coordination polymer with layers oriented parallel to the bc crystal planes. In the crystal, adjacent layers are further connected by O—H...O and C—H...O hydrogen bonds, forming a three-dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions and shows photocatalytic activity for the degradation of methylene blue in the solid state at room temperature.

2019 ◽  
Vol 75 (2) ◽  
pp. 196-199 ◽  
Author(s):  
Ning-Ning Chen ◽  
Jian-Ning Ni ◽  
Jun Wang ◽  
Jian-Qing Tao

A novel two-dimensional (2D) ZnII coordination framework, poly[[μ-1,3-bis(2-methyl-1H-imidazol-1-yl)benzene](μ-5-nitrobenzene-1,3-dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)] n or [Zn(NO2-BDC)(1,3-BMIB)] n [1,3-BMIB is 1,3-bis(2-methyl-1H-imidazol-1-yl)benzene and NO2-H2BDC is 5-nitrobenzene-1,3-dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single-crystal X-ray diffraction. Single-crystal X-ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10\overline{2}) crystal planes based on left-handed helices, right-handed helical NO2-BDC–Zn chains and [Zn2(1,3-BMIB)2] n clusters. In the crystal, adjacent layers are further connected by C—H...O hydrogen bonds, C—H...π interactions, C—O...π interactions and N—O...π interactions to form a three-dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.


2014 ◽  
Vol 70 (3) ◽  
pp. 277-280 ◽  
Author(s):  
Cai-Xia Yu ◽  
Feng Zhao ◽  
Min Zhou ◽  
Dan-Feng Zhi ◽  
Lei-Lei Liu

In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnIIcation, two halves of 2,2′-(diazene-1,2-diyl)dibenzoate anions (denotedL2−) and half of a 1,2-bis(pyridin-4-yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnIIcentre is four-coordinated by three O atoms of bridging carboxylate groups from threeL2−ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnIIatoms are bridged by two carboxylate groups ofL2−ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodesviathe sharing of fourL2−ligands to form a two-dimensional [Zn2L4]nnet. These nets are separated by bpe ligands acting as spacers, producing a three-dimensional framework with a 4664topology. Powder X-ray diffraction and solid-state photoluminescence were also measured.


2018 ◽  
Vol 74 (5) ◽  
pp. 599-603 ◽  
Author(s):  
Yan-Ju Liu ◽  
Di Cheng ◽  
Ya-Xue Li ◽  
Xiang-Ru Meng ◽  
Huai-Xia Yang

In recent years, N-heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N-atom donors, as well as O-atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two-dimensional coordination polymer, namely poly[[μ3-2,2′-(1,2-phenylene)bis(4-carboxy-1H-imidazole-5-carboxylato)-κ6 O 4,N 3,N 3′,O 4′:O 5:O 5′]manganese(II)], [Mn(C16H8N4O8)] n or [Mn(H4Phbidc)] n , has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six-coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two-dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H...O hydrogen bonds, forming a three-dimensional structure in the solid state.


2020 ◽  
Vol 76 (11) ◽  
pp. 1024-1033
Author(s):  
Fang-Hua Zhao ◽  
Shi-Yao Li ◽  
Wen-Yu Guo ◽  
Zi-Hao Zhao ◽  
Xiao-Wen Guo ◽  
...  

Two new CdII MOFs, namely, two-dimensional (2D) poly[[[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ2-heptanedioato)cadmium(II)] tetrahydrate], {[Cd(C7H10O4)(C18H18N4)]·4H2O} n or {[Cd(Pim)(bbimb)]·4H2O} n (1), and 2D poly[diaqua[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ4-decanedioato)(μ2-decanedioato)dicadmium(II)], [Cd2(C10H16O4)2(C18H18N4)(H2O)2] n or [Cd(Seb)(bbimb)0.5(H2O)] n (2), have been synthesized hydrothermally based on the 1,4-bis(1H-benzimidazol-1-yl)butane (bbimb) and pimelate (Pim2−, heptanedioate) or sebacate (Seb2−, decanedioate) ligands. Both MOFs were structurally characterized by single-crystal X-ray diffraction. In 1, the CdII centres are connected by bbimb and Pim2− ligands to generate a 2D sql layer structure with an octameric (H2O)8 water cluster. The 2D layers are further connected by O—H...O hydrogen bonds, resulting in a three-dimensional (3D) supramolecular structure. In 2, the CdII centres are coordinated by Seb2− ligands to form binuclear Cd2 units which are linked by bbimb and Seb2− ligands into a 2D hxl layer. The 2D layers are further connected by O—H...O hydrogen bonds, leading to an 8-connected 3D hex supramolecular network. IR and UV–Vis spectroscopy, thermogravimetric analysis and solid-state photoluminescence analysis were carried out on both MOFs. Luminescence sensing experiments reveal that both MOFs have good selective sensing towards Fe3+ in aqueous solution.


2019 ◽  
Vol 75 (7) ◽  
pp. 979-984 ◽  
Author(s):  
Chen-Dong Pan ◽  
Jun Wang ◽  
Ju-Qin Xu ◽  
Kang-Feng Zhang ◽  
Xiao-Wan Wang

The Fe3+ ion is the most important element in environmental systems and plays a fundamental role in biological processes. Iron deficiency can result in diseases and highly selective and sensitive detection of trace Fe3+ has become a hot topic. A novel two-dimensional ZnII coordination framework, poly[[μ-4,4′-bis(2-methylimidazol-1-yl)diphenyl ether-κ2 N 3:N 3′](μ-4,4′-sulfonyldibenzoato-κ2 O:O′)zinc(II)], [Zn(C14H8O6S)(C20H18N4O)] n or [Zn(SDBA)(BMIOPE)] n , (I), where H2SDBA is 4,4′-sulfonyldibenzoic acid and BMIOPE is 4,4′-bis(2-methylimidazol-1-yl)diphenyl ether, has been prepared and characterized by IR, elemental analysis, thermal analysis and X-ray diffraction analysis, the latter showing that the coordination polymer exhibits a threefold interpenetrating two-dimensional 44-sql network. In addition, it displays a highly selective and sensitive sensing for Fe3+ ions in aqueous solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xin-Yue Zhang ◽  
Chen Zhang ◽  
Jun Wang ◽  
Xiao-Juan Xu

Abstract A new 2-dimensional (2D) zinc(II) coordination polymer based on a flexible bis(imidazole) ligand, namely, [Zn2(BIBP)(BPDC)2·DMF] n (1) BIBP is 1,4-bis(4-(imidazole-1-yl)benzyl)piperazine and H2BPDC is benzophenone-2,4′-dicarboxylic acid), has been synthesized and characterized through single-crystal X-ray diffraction, infrared (IR) spectroscopy, and elemental and thermal gravimetric analysis. Complex 1 exhibits a 2D framework oriented parallel to [0 2 1] based on [Zn(BPDC)] n chains. The fluorescence and catalytic properties of complex 1 for the photodegradation of methylene blue were investigated.


2014 ◽  
Vol 70 (6) ◽  
pp. 584-587 ◽  
Author(s):  
Wei Zhang ◽  
Shu-Guang Qi ◽  
Yu-Quan Feng

The title compound, [Sr7(C7H3NO4)6(SO4)(H2O)6]n, has been synthesized by an ionothermal method using the ionic liquid 1-ethyl-3-methylimidazolium ([Emim]Br) as solvent, and characterized by elemental analysis, energy-dispersive X-ray spectroscopy, IR and single-crystal X-ray diffraction. The structure of the compound can be viewed as a three-dimensional coordination polymer composed of Sr2+cations, pyridine-2,6-dicarboxylate anions, sulfate anions and water molecules. The compound not only exhibits a three-dimensional structure with a unique coordination mode of the sulfate anion, but also features the first example of a heptanuclear strontium(II) coordination polymer. The structure is further stabilized by O—H...O hydrogen bonds and π–π stacking interactions.


2014 ◽  
Vol 70 (12) ◽  
pp. 1138-1142 ◽  
Author(s):  
Le Li ◽  
Jian-Qing Tao

A twofold interpenetrating three-dimensional CdIIcoordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single-crystal X-ray diffraction. The asymmetric unit consists of a divalent CdIIatom, one 1,3-bis(2-methyl-1H-imidazol-1-yl)benzene (1,3-BMIB) ligand and one fully deprotonated 5-nitrobenzene-1,3-dicarboxylate (NO2-BDC2−) ligand. The coordination sphere of the CdIIatom consists of five O-donor atoms from three different NO2-BDC2−ligands and two imidazole N-donor atoms from two different 1,3-BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2-BDC ligand links three CdIIatomsviaa μ1-η1:η1chelating mode and a μ2-η2:η1bridging mode. The title compound is a twofold interpenetrating 3,5-connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.


2017 ◽  
Vol 73 (10) ◽  
pp. 1402-1404 ◽  
Author(s):  
Fuhong Liu ◽  
Yan Ding ◽  
Qiuyu Li ◽  
Liping Zhang

The title compound, poly[bis{μ2-4,4′-bis[(1,2,4-triazol-1-yl)methyl]biphenyl-κ2N4:N4′}bis(nitrato-κO)zinc(II)], [Zn(NO3)2(C18H16N6)2]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis[(1H-1,2,4-triazol-1-yl)methyl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnIIcation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis[(1H-1,2,4-triazol-1-yl)methyl]-1,1′-biphenyl ligands, forming a distorted octahedral {ZnN4O2} coordination geometry. The linear 4,4′-bis[(1H-1,2,4-triazol-1-yl)methyl]-1,1′-biphenyl ligand links two ZnIIcations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C—H...O, C—H...N, C—H...π and π–π stacking interactions, resulting in a three-dimensional supramolecular architecture.


2015 ◽  
Vol 70 (8) ◽  
pp. 605-608
Author(s):  
Zhi-Guo Kong ◽  
Sheng-Nan Guo ◽  
Jia-Qi Miao ◽  
Miao An

AbstractA new Cd(II) coordination polymer, [Cd(CNA)]n (1) (H2CNA = 3-(carboxymethoxy)-2-naphthoic acid), was hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. The crystals are monoclinic, space group P21/c with a = 16.9698(18), b = 7.8314(8), c = 8.9553(10) Å, β = 100.657(2)°, V = 1169.6(2) Å3, Z = 4, Dcalcd. = 2.03 g cm−3, μ(MoKα) = 1.9 mm−1, F(000) = 696 e, R = 0.0305, wR = 0.0784 for 172 refined parameters and 2285 data. Each CNA anion bridges three Cd(II) cations to give rise to a two-dimensional network structure. Topologically, if each CNA anion is regarded as a linker, and each Cd(II) atom considered as a 4-conencted node, the structure is simplified as a 4-connected (4,4) network. The solid state photoluminescent properties of the compound were also studied at room temperature.


Sign in / Sign up

Export Citation Format

Share Document