scholarly journals Iron(II) complexes of dimethyltriazacyclophane

2018 ◽  
Vol 74 (12) ◽  
pp. 1641-1649
Author(s):  
Wei-Tsung Lee ◽  
Matthias Zeller ◽  
David Upp ◽  
Yuliya Politanska ◽  
Doug Steinman ◽  
...  

Treatment of the ortho-triazacyclophane 1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-triene [(C6H5)3(NH)(NCH3)2, L1] with Fe[N(SiMe3)2]2 yields the dimeric iron(II) complex bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)bis[(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)iron(II)], [Fe(C20H18N3)4] or Fe2(L1)4 (9). Dissolution of 9 in tetrahydrofuran (THF) results in solvation by two THF ligands and the formation of a simpler monoiron complex, namely bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido-κN 7)bis(tetrahydrofuran-κO)iron(II), [Fe(C20H18N3)2(C4H8O)2] or (L1)2Fe(THF)2 (10). The reaction is reversible and 10 reverts in vacuo to diiron complex 9. In the structures of both 9 and 10, the monoanionic triazacyclophane ligand L1− is observed in only the less-symmetric saddle conformation. No bowl-shaped crown conformers are observed in the solid state, thus preventing chelating κ3-coordination to the metal as had been proposed earlier based on density functional theory (DFT) calculations. Instead, the L1− ligands are bound in either a η2-chelating fashion through the amide and one amine donor (for one of the four ligands of 9), or solely through their amide N atoms in an even simpler monodentate η1-coordination mode. Density functional calculations on dimer 9 revealed nearly full cationic charges on each Fe atom and no bonding interaction between the two metal centers, consistent with the relatively long Fe...Fe distance of 2.912 (1) Å observed in the solid state.

2021 ◽  
Vol 68 (3) ◽  
pp. 718-727
Author(s):  
Ibrahim Bouabdallah ◽  
Tarik Harit ◽  
Mahmoud Rahal ◽  
Fouad Malek ◽  
Monique Tillard ◽  
...  

The single crystal X-ray structure of new 1,1’-bis(2-nitrophenyl)-5,5’-diisopropyl-3,3’-bipyrazole, 1, is triclinic P I–, a = 7.7113(8), b = 12.3926(14), c = 12.9886(12) Å, α = 92.008(8), β = 102.251(8), γ = 99.655(9)°. The structural arrangement is compared to that of 5,5’-diisopropyl-3,3’-bipyrazole, 5, whose single crystal structure is found tetragonal I41/a, a = b = 11.684(1), c = 19.158(1) Å. The comparison is also extended to the structures previously determined for 1,1’-bis(2-nitrophenyl)-5,5’-propyl-3,3’-bipyrazole, 2, 1,1’-bis(4-nitrophenyl)-5,5’-diisopropyl-3,3’-bipyrazole, 3, and 1,1’-bis(benzyl)-5,5’-diisopropyl-3,3’-bipyrazole, 4. Density Functional Theory (DFT) calculations are used to investigate the molecular geometries and to determine the global reactivity parameters. The geometry of isolated molecules and the molecular arrangements in the solid state are analyzed according to the nature of the groups connected to the bipyrazole core.


CrystEngComm ◽  
2015 ◽  
Vol 17 (30) ◽  
pp. 5664-5671 ◽  
Author(s):  
Prasanta Kumar Bhaumik ◽  
Antonio Bauzá ◽  
Michael G. B. Drew ◽  
Antonio Frontera ◽  
Shouvik Chattopadhyay

Three copper(ii) Schiff base complexes have been synthesized and characterized. Supramolecular assemblies in the solid state are analyzed by DFT calculations.


2009 ◽  
Vol 113 (16) ◽  
pp. 5464-5472 ◽  
Author(s):  
A. Sroka-Bartnicka ◽  
S. Olejniczak ◽  
W. Ciesielski ◽  
A. Nosal ◽  
H. Szymanowski ◽  
...  

2020 ◽  
Vol 56 (59) ◽  
pp. 8293-8296 ◽  
Author(s):  
Mihails Arhangelskis ◽  
Filip Topić ◽  
Poppy Hindle ◽  
Ricky Tran ◽  
Andrew J. Morris ◽  
...  

The interconversions of halogen-bonded cocrystals exhibiting three different stoichiometries were predicted by different types of dispersion-corrected density functional theory (DFT) calculations and predictions experimentally validated by mechanochemistry.


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Author(s):  
Hanlin Gan ◽  
Liang Peng ◽  
Feng Long Gu

The mechanism of the Cu(i)-catalyzed domino reaction furnishing 1-aryl-1,2,3-triazole assisted by CuI and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is explored with density functional theory (DFT) calculations.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 926
Author(s):  
Malose J. Mphahlele ◽  
Eugene E. Onwu ◽  
Marole M. Maluleka

The conformations of the title compounds were determined in solution (NMR and UV-Vis spectroscopy) and in the solid state (FT-IR and XRD), complemented with density functional theory (DFT) in the gas phase. The nonequivalence of the amide protons of these compounds due to the hindered rotation of the C(O)–NH2 single bond resulted in two distinct resonances of different chemical shift values in the aromatic region of their 1H-NMR spectra. Intramolecular hydrogen bonding interactions between the carbonyl oxygen and the sulfonamide hydrogen atom were observed in the solution phase and solid state. XRD confirmed the ability of the amide moiety of this class of compounds to function as a hydrogen bond acceptor to form a six-membered hydrogen bonded ring and a donor simultaneously to form intermolecular hydrogen bonded complexes of the type N–H···O=S. The distorted tetrahedral geometry of the sulfur atom resulted in a deviation of the sulfonamide moiety from co-planarity of the anthranilamide scaffold, and this geometry enabled oxygen atoms to form hydrogen bonds in higher dimensions.


2019 ◽  
Vol 21 (6) ◽  
pp. 3227-3241 ◽  
Author(s):  
Krishnamoorthy Arumugam ◽  
Neil A. Burton

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. This DFT study predicts VI/V reduction potentials of a range of uranyl(vi) complexes in non-aqueous solutions within ∼0.10−0.20 eV of experiment.


Sign in / Sign up

Export Citation Format

Share Document