Crystal structures of two (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) complexes

2019 ◽  
Vol 75 (11) ◽  
pp. 1509-1516
Author(s):  
Reese A. Clendening ◽  
Matthias Zeller ◽  
Tong Ren

Reported in this contribution are the synthesis and crystal structures of two new FeIII complexes of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (HMC), namely, dichlorido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) chloride, [FeCl2(C16H36N4)]Cl or cis-[FeCl2(rac-HMC)]Cl (1), and dichlorido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) tetrachloridoferrate, [FeCl2(C16H36N4)][FeCl4] or trans-[FeCl2(meso-HMC)][FeCl4] (2). Single-crystal X-ray diffraction studies revealed that both 1 and 2 adopt a pseudo-octahedral geometry, where the macrocycles adopt folded and planar geometries, respectively. The chloride ligands in 1 are cis to each other, while those in 2 have a trans configuration. The relevant bond angles in 1 deviate substantially from an ideal octahedral coordination geometry, with the angles between the cis substituents varying from 81.55 (5) to 107.56 (4)°, and those between the trans-ligating atoms varying from 157.76 (8) to 170.88 (3)°. In contrast, 2 adopts a less strained configuration, in which the N—Fe—N angles vary from 84.61 (8) to 95.39 (8)° and the N—Fe—Cl angles vary from 86.02 (5) to 93.98 (5)°.

1995 ◽  
Vol 50 (9) ◽  
pp. 1281-1286 ◽  
Author(s):  
Klaus Kopka ◽  
Rainer Mattes

AbstractThe complexes [(μ-PhCONNCOPh){VOCl(NHNHCOPh)}2 ·5CH3CN, (1), [(μ-PhCONNCOPh){V(dbh)}2]-2CH3CN, (2) and [{VO}2(tbh)], (3) have been prepared by reaction of VCl2(acac)2, acac = acetylaceto n a to (l-), and VCl2(acpn), acpn = propylendiim ino-bis(acetylacetonato(2-)), with benzoylhydrazine. The structures of the centrosymmetric dimeric molecules 1 -3 have been determined by single crystal X-ray diffraction. 1 and 2 contain both doubly deprotonated N,N′-dibenzoylhydrazine as bridging, doubly N,O chelating ligand. In 1 the two remaining coordination sites at the VOCl group are occupied by the hydrazid o(1-) ligand [NHNHCOPh]- . 2 is a non-oxo vanadium(IV) complex. The coordination geometry is approximately trigonal prismatic. The π-back donating effect of the oxo function is substituted by back donation from three negatively charged enolic oxygen atoms. The V - O bond lengths range from 192.0(2) to 193.7(2) pm. 3 contains a unique highly symmetrical octadentate ligand, formed during the synthesis. It is coordinated to two oxovanadin(IV) centers by N,O chelation. The coordination geometry is square pyramidal.


1992 ◽  
Vol 47 (5) ◽  
pp. 680-684 ◽  
Author(s):  
Birgit Siewert ◽  
Ulrich Müller

In the effort to react W(CO)6 with (PPh4)2[As2Cl8] and Cr(CO)6 with PPh4[As2SBr5] in tetrahydrofurane under UV irradiation the title compounds were obtained as main products. Their crystal structures were determined by X-ray diffraction. PPh4[AsCl4(THF)2], monoclinic, P2/c, Z = 2, a = 881.6(3), b = 809.0(6), c = 2418.6(9) pm, β = 99.44(4)°, R = 0.086 for 1619 observed unique reflexions. PPh4[AsBr4(THF)2], monoclinic, C 2/c, Z = 4, a = 2459.2(5), b = 748.2(3), c = 1784.3(4) pm, β = 94.02(2)°, R = 0.080 for 1513 reflexions. In both compounds ions [AsX4(THF)2]- are located on inversion centers; they have octahedral coordination with trans configuration; the stereochemical activity of the lone electron pairs does not show up in deviations of the bond angles, but in increased bond lengths. The PPh4+ ions are stacked to columns in the b direction.


Author(s):  
P. Vojtíšek ◽  
I. Císařová ◽  
J. Podlaha ◽  
Z. Žák ◽  
S. Böhm ◽  
...  

AbstractCrystal structures of the title compounds were determined by single crystal X-ray diffraction. Absolute configuration of the barium salt of (+)-(


1991 ◽  
Vol 46 (5) ◽  
pp. 566-572 ◽  
Author(s):  
Axel Gudat ◽  
Peter Höhn ◽  
Rüdiger Kniep ◽  
Albrecht Rabenau

The isotypic ternary compounds Ba3[MoN4] and Ba3[WN4] were prepared by reaction of the transition metals with barium (Ba3N2, resp.) under nitrogen. The crystal structures were determined by single crystal X-ray diffraction: Ba3[MoN4] (Ba3[WN4]): Pbca; Z = 8; a = 1083.9(3) pm (1091.8(3) pm), b = 1030.3(3) pm (1037.5(3) pm), c = 1202.9(3) pm (1209.2(4) pm). The structures contain isolated tetrahedral anions [MN4]6- (M = Mo, W) which are arranged in form of slightly distorted hexagonal layers and which are stacked along [010] with the sequence (···AB···). Two of the three Ba atoms are situated between, the third one is placed within the layers of [MN4]-groups. In this way the structures can be derived from the Na3As structure type.


1985 ◽  
Vol 38 (8) ◽  
pp. 1243 ◽  
Author(s):  
JC Dyason ◽  
LM Engelhardt ◽  
C Pakawatchai ◽  
PC Healy ◽  
AH White

The crystal structures of the title compounds have been determined by single-crystal X-ray diffraction methods at 295 K. Crystal data for (PPh3)2CuBr2Cu(PPh3) (1) show that the crystals are iso-morphous with the previously studied chloro analogue, being monoclinic, P21/c, a 19.390(8), b 9.912(5), c 26.979(9) Ǻ, β 112,33(3)°; R 0.043 for No 3444. Cu( trigonal )- P;Br respectively are 2.191(3); 2.409(2), 2.364(2) Ǻ. Cu(tetrahedral)- P;Br respectively are 2.241(3), 2.249(3); 2.550(2), 2.571(2) Ǻ. Crystals of 'step' [PPh3CuBr]4 (2) are isomorphous with the solvated bromo and unsolvated iodo analogues, being monoclinic, C2/c, a 25.687(10), b 16.084(7), c 17.815(9) Ǻ, β 110.92(3)°; R 0.072 for No 3055. Cu( trigonal )- P;Br respectively are 2.206(5); 2.371(3), 2.427(2) Ǻ. Cu(tetrahedral)- P;Br are 2.207(4); 2.446(2), 2.676(3), 2.515(3) Ǻ.


Author(s):  
William W. Brennessel ◽  
John E. Ellis

The reaction of the [K(18-crown-6)(thf)2]1+ (thf is tetrahydrofuran) salt of bis(anthracene)ferrate(−1), or [Fe(C14H10)2]−, with 2,6-dimethylphenyl isocyanide (CNXyl) in thf resulted in the formation of two new iron isocyanide complexes, namely, [(1,2,3,4-η)-anthracene]tris(2,6-dimethylphenyl isocyanide)iron, [Fe(C14H10)(C9H9N)3] or [Fe(1,2,3,4-η-C14H10)(CNXyl)3], and {5,6-bis(2,6-dimethylanilino)-3-(2,6-dimethylphenyl)-1,2,7-tris[(2,6-dimethylphenyl)imino]-3-azoniahept-3-ene-1,4,7-triido}tris(2,6-dimethylphenyl isocyanide)iron tetrahydrofuran disolvate, [Fe(C54H56N6)(C9H9N)3]·2C4H8O or [Fe(C54H56N6)(CNXyl)3]·2C4H8O, which were characterized by single-crystal X-ray diffraction. The former is likely an intermediate along the path to the known homoleptic [Fe(CNXyl)5], while the latter contains a tridentate ligand that is formed from the `coupling' of six CNXyl ligands. A third crystal structure from this reaction, (7-methylindol-1-ido-κN)(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6 O)potassium, [K(C9H8N)(C12H24O6)] or [K(C9H8N)(18-crown-6)], contains a 7-methylindol-1-ide anion, in which one CNXyl ligand has shed a proton during its reductive cyclization.


2002 ◽  
Vol 57 (10) ◽  
pp. 1090-1100
Author(s):  
Franziska Emmerling ◽  
Caroline Röhr

AbstractThe title compounds were synthesized at a temperature of 700 °C via oxidation of elemental Bi with the hyperoxides AO2 or via reaction of the elemental alkali metals A with Bi2O3. Their crystal structures have been determined by single crystal x-ray diffraction. They are dominated by two possible surroundings of Bi by O, the ψ-trigonal-bipyramidal three (B) and the ψ-tetrahedral four (T) coordination. Cs6Bi4O9 (triclinic, spacegroup P1̄, a = 813.82(12), b = 991.60(14), c = 1213.83(18) pm, α = 103.658(2), β = 93.694(3), γ = 91.662(3)°, Z = 2) contains centrosymmetric chain segmentes [Bi8O18]12- with six three- (T) and two four-coordinated (B) Bi(III) centers. K9Bi5O13 (monoclinic, spacegroup P21/c, a = 1510.98(14), b = 567.59(5), c = 2685.6(2) pm, β = 111.190(2)°, Z = 4) is a mixed valence compound with isolated [BivO4]3- tetrahedra and chains [BiIII4O9]6- of two T and two B coordinated Bi. In the compounds A2Bi4O7 (A = Rb/Cs: monoclinic, C2/c, a = 2037.0(3) / 2130.6(12), b = 1285.5(2) / 1301.9(7), c = 1566.6(2) / 1605.6(9) pm, β = 94.783(3) / 95.725(9)°, Z = 8) ribbons [Bi4O6O2/2]2- are formed, which are condensed to form a three-dimensional framework.


1980 ◽  
Vol 33 (2) ◽  
pp. 313 ◽  
Author(s):  
PR Jefferies ◽  
BW Skelton ◽  
B Walter ◽  
AH White

Following the suggestion made earlier, on the basis of solution spectroscopy, that a number of eriostyl/nitrobenzoate compounds form charge-transfer self-complexes, a number of these have been investigated structurally by single-crystal X-ray diffraction methods in order to ascertain the presence or otherwise of such interactions in the solid state. The substances thus studied were eriostyl 3,5-dinitrobenzoate (1), eriostyl p-nitrobenzoate (2), tetrahydroeriostyl 3,5-dinitrobenzoate (3), and eriostemyl 3,5-dinitrobenzoate (4);* structure determinations in all cases, although displaying the presence of strong charge-transfer interactions from the two moieties of each molecule, show that the interactions in the solid state are intermolecular in nature.


1987 ◽  
Vol 42 (12) ◽  
pp. 1493-1499 ◽  
Author(s):  
Siegfried Pohl ◽  
Wolfgang Saak ◽  
Detlev Haase

AbstractThe compounds (Pn4P)4Sb8I28 (1) and (Ph4P)Sb3I10 (2) were prepared by the reaction of SbI3 and Ph4PI in acetonitrile (molar ratios 2:1 and 3:1 respectively). The structures of 1 and 2 were determined from single crystal X-ray diffraction data.1 crystallizes in the triclinic space group P1̄ with a - 1321.7(5). b = 1346.7(5), c = 2201.8(8) pm, α = 104.18(2). β = 99.92(2), γ = 100.33(2)°; 2: monoclinic, C2/c, a = 2371.1(2), b = 745.0(1), c = 2495.1(2) pm, β = 100.75(1)°.Whereas 1 exhibits isolated Sb8I284- ions, the anions of 2 are built up of polymeric chains [Sb3I10- ]∞. In both compounds the distorted Sbl6 octahedra are linked by common edges. The Sb-I distances are in the range between 277.4 and 354.8 pm (1) and between 277.4 and 342.4 pm (2). The observed structures do not only depend on stoichiometry, the nature of the counter cations, and the possibility of oligomerisation but also on the wide variety of the Sb-I bond strengths and the different bridges formed by iodine.The lone pair of Sb(III) seems to be predominantly 5 s2.


1983 ◽  
Vol 61 (3) ◽  
pp. 579-583 ◽  
Author(s):  
Laurence K. Thompson

The molecular structure of [Cu2(PAP)(OH)(IO3)3]•4H2O (PAP = 1,4-di(2′-pyridyl)aminophthalazine) has been determined by single crystal X-ray diffraction. [Cu2(PAP)(OH)(IO3)3]•4H2O belongs to the space group P21/c with a = 7.266(1), b = 15.269(1), c = 25.870(1) Å, β = 96.40(I)°, V = 2852.2 Å3, Z = 4. The copper coordination geometry lies between a square pyramid and a trigonal bipyramid and the two copper(II) centres are bridged by three groups: N2 (phthalazine), hydroxide, and bidentate iodate, in a structure which is analogous to that reported for [Cu2(PAP)(OH)Cl3]•1.5H2O. Replacing the chlorine bridge by iodate has the effect of forcing the two metal centres further apart, thus creating a larger Cu—O—Cu bridge angle. This increase in oxygen bridge angle (101° to 114°) is also reflected in the enhanced antiferromagnetic exchange (−2J(Cl) = 201 cm−1, −2J(IO3) = 335 cm−1). Other groups of varying size (e.g. Br, NO3, SO4) can act as bridges between the two copper centres in systems of this sort with the resultant variation in copper–copper separation and oxygen bridge angle.


Sign in / Sign up

Export Citation Format

Share Document