scholarly journals An X-ray study of new hybrid systems of Fe(III) and Cu(II) based anions

2014 ◽  
Vol 70 (a1) ◽  
pp. C537-C537
Author(s):  
Sofiane Bouacida ◽  
Rafika Bouchene ◽  
Amina Khadri

Organic-inorganic hybrid compounds represent one of the most important developments in materials chemistry in recent years [1]. The role of weak intermolecular interactions in the stabilization of these hybrid systems is one of the main targets of our investigation in crystal engineering study. In continuation of our research on N-aromatic heterocyclic-metal halide salts, the X-ray crystal structures of 4-dimethylaminopyridinium (HDMAP) cation with tetrachlorocuprate (II) (1) and tetrachloroferrate (III) (2) anions is reported [2,3]. In (1), Cu(II) is situated on a twofold rotation axis (4 e). The [CuCl4]2- ions are highly distorted with a mean trans angle of 141.02(1)0as a result of hydrogen bonding interactions with two nearly planar HDMAP cations (0.0295 Å mean deviation). The crystal structure of (1) is stabilized by N–H...Cl and C–H...Cl hydrogen bonds. In the three dimensional network, cations and anions pack in the lattice so as to generate chains of [CuCl4]2- anions separated by two orientations of cation layers, which are interlocked through π–π tacking contacts between pairs of pyridine rings, with centroid–centroid distances of 3.7874 (7) Å. In (2), the protonoted 4-(dimethylamino) pyridine cation is essentially planar (the r.m.s deviation for all non-H atoms being 0.004 Å). The packing of the ionic entities is realized by alternating layers of cations and [FeCl4]- anions parallel to (010) whereby the cations are oriented in a zig-zag fashion. The crystal packing is stabilized by N–H...Cl and C–H...Cl hydrogen bonds forming a three-dimensional network.

2016 ◽  
Vol 72 (7) ◽  
pp. 1047-1049 ◽  
Author(s):  
Mamadou Ndiaye ◽  
Abdoulaye Samb ◽  
Libasse Diop ◽  
Thierry Maris

In the structure of the title salt, (C5H14N3)2[CuCl4], the CuIIatom in the anion lies on a twofold rotation axis. The tetrachloridocuprate(II) anion adopts a flattened tetrahedral coordination environment and interacts electrostatically with the tetramethylguanidinium cation. The crystal packing is additionally consolidated through N—H...Cl and C—H...Cl hydrogen bonds, resulting in a three-dimensional network structure.


Author(s):  
Gülçin Şefiye Aşkın ◽  
Fatih Çelik ◽  
Nefise Dilek ◽  
Hacali Necefoğlu ◽  
Tuncer Hökelek

In the title polymeric compound, [Co(C8H5O3)2(C4H4N2)(H2O)2]n, the CoIIatom is located on a twofold rotation axis and has a slightly distorted octahedral coordination sphere. In the equatorial plane, it is coordinated by two carboxylate O atoms of two symmetry-related monodentate formylbenzoate anions and by two N atoms of two bridging pyrazine ligands. The latter are bisected by the twofold rotation axis. The axial positions are occupied by two O atoms of the coordinating water molecules. In the formylbenzoate anion, the carboxylate group is twisted away from the attached benzene ring by 7.50 (8)°, while the benzene and pyrazine rings are oriented at a dihedral angle of 64.90 (4)°. The pyrazine ligands bridge the CoIIcations, forming linear chains running along theb-axis direction. Strong intramolecular O—H...O hydrogen bonds link the water molecules to the carboxylate O atoms. In the crystal, weak O—Hwater...Owaterhydrogen bonds link adjacent chains into layers parallel to thebcplane. The layers are linkedviaC—Hpyrazine...Oformylhydrogen bonds, forming a three-dimensional network. There are also weak C—H...π interactions present.


IUCrData ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kai-Long Zhong ◽  
Guo-Qing Cao ◽  
Wei Song ◽  
Chao Ni

In the complex cation of the title salt, [Co(C12H8N2)3](C10H5O8)2·H2O, the CoII cation is situated on a twofold rotation axis and is coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10-phenanthroline (phen) ligands. In the crystal, the non-coordinating 2,4,5-tricarboxybenzoate anions interact with each other via O—H...O hydrogen bonds, generating a two-dimensional network parallel to (100). Adjacent sheets are connected by waterO—H...Ocarboxylate hydrogen bonds, resulting in a three-dimensional network structure that surrounds the complex cations.


2013 ◽  
Vol 69 (12) ◽  
pp. 1549-1552 ◽  
Author(s):  
Vladimir V. Chernyshev ◽  
Sergey Y. Efimov ◽  
Ksenia A. Paseshnichenko ◽  
Andrey A. Shiryaev

The title salt, C8H12NO+·C7H10NO5−, crystallizes in two polymorphic modifications,viz.monoclinic (M) and orthorhombic (O). The crystal structures of both polymorphic modifications have been established from laboratory powder diffraction data. The crystal packing motifs in the two polymorphs are different, but the conformations of the anions are generally similar. InM, the anions are linked by pairs of hydrogen bonds of the N—H...O and O—H...O types into chains along theb-axis direction, and neighbouring molecules within the chain are related by the 21screw axis. The cations link these chainsviaO—H...O and N—H...O hydrogen bonds into layers parallel to (001). InO, the anions are linked by O—H...O hydrogen bonds into helices along [001], and neighbouring molecules within the helix are related by the 21screw axis. The neighbouring helical turns are linked by N—H...O hydrogen bonds. The cations link the helicesviaO—H...O and N—H...O hydrogen bonds, thus forming a three-dimensional network.


2007 ◽  
Vol 63 (3) ◽  
pp. o1121-o1122
Author(s):  
Lars S. von Chrzanowski ◽  
Martin Lutz ◽  
Anthony L. Spek ◽  
Aidan R. McDonald ◽  
Gerard P. M. van Klink ◽  
...  

The title compound, C7H8NO3 +·Cl−·0.5H2O, features inter- and intramolecular O—H...Cl and N—H...O hydrogen bonds, linking the molecules into a three-dimensional network. The water molecule is located on a crystallographic twofold rotation axis.


Author(s):  
Yongtae Kim ◽  
Sung Kwon Kang

The cation of the complex title salt, [Zn(C13H11N3)2(H2O)](NO3)2, lies about a twofold rotation axis, which passes through the ZnIIatom and the O atom of the aqua ligand. The ZnIIatom adopts a distorted trigonal–bipyramidal geometry defined by two N atoms in axial positions [angle = 166.24 (7)°], and two N and one O atom in the equatorial plane [range of angles: 115.17 (7)–122.42 (3)°]. The dihedral angle between the imidazole and aniline rings is 23.86 (5)°. In the crystal, N—H...O and O—H...O hydrogen bonds link the components into a three-dimensional network.


2018 ◽  
Vol 74 (8) ◽  
pp. 1111-1116 ◽  
Author(s):  
Shet M. Prakash ◽  
S. Naveen ◽  
N. K. Lokanath ◽  
P. A. Suchetan ◽  
Ismail Warad

2-Aminopyridine and citric acid mixed in 1:1 and 3:1 ratios in ethanol yielded crystals of two 2-aminopyridinium citrate salts, viz. C5H7N2 +·C6H7O7 − (I) (systematic name: 2-aminopyridin-1-ium 3-carboxy-2-carboxymethyl-2-hydroxypropanoate), and 3C5H7N2 +·C6H5O7 3− (II) [systematic name: tris(2-aminopyridin-1-ium) 2-hydroxypropane-1,2,3-tricarboxylate]. The supramolecular synthons present are analysed and their effect upon the crystal packing is presented in the context of crystal engineering. Salt I is formed by the protonation of the pyridine N atom and deprotonation of the central carboxylic group of citric acid, while in II all three carboxylic groups of the acid are deprotonated and the charges are compensated for by three 2-aminopyridinium cations. In both structures, a complex supramolecular three-dimensional architecture is formed. In I, the supramolecular aggregation results from Namino—H...Oacid, Oacid...H—Oacid, Oalcohol—H...Oacid, Namino—H...Oalcohol, Npy—H...Oalcohol and Car—H...Oacid interactions. The molecular conformation of the citrate ion (CA3−) in II is stabilized by an intramolecular Oalcohol—H...Oacid hydrogen bond that encloses an S(6) ring motif. The complex three-dimensional structure of II features Namino—H...Oacid, Npy—H...Oacid and several Car—H...Oacid hydrogen bonds. In the crystal of I, the common charge-assisted 2-aminopyridinium–carboxylate heterosynthon exhibited in many 2-aminopyridinium carboxylates is not observed, instead chains of N—H...O hydrogen bonds and hetero O—H...O dimers are formed. In the crystal of II, the 2-aminopyridinium–carboxylate heterosynthon is sustained, while hetero O—H...O dimers are not observed. The crystal structures of both salts display a variety of hydrogen bonds as almost all of the hydrogen-bond donors and acceptors present are involved in hydrogen bonding.


2006 ◽  
Vol 62 (5) ◽  
pp. o1745-o1746
Author(s):  
Ping Yin ◽  
Mao-Lin Hu ◽  
Jing Xiong ◽  
Xiao-Qing Cai

In the title compound, C10H12FN3O5·H2O, the crystal packing is stabilized by an extensive three-dimensional network of intermolecular O—H...O and N—H...O hydrogen bonds.


2014 ◽  
Vol 70 (7) ◽  
pp. o791-o792 ◽  
Author(s):  
Scott A. Steiger ◽  
Anthony J. Monacelli ◽  
Chun Li ◽  
Janet L. Hunting ◽  
Nicholas R. Natale

The title compound, C25H27NO4, has a flattened dihydropyridine ring. The benzene and phenyl rings are synclinal to one another, forming a dihedral angle of 49.82 (8)°; the axis of the biphenyl rings makes an 81.05 (9)° angle to the plane of the dihydropyridine ring. In the crystal, N—H...O hydrogen bonds link the molecules into chain motifs running along thea-axis direction. The chains are cross-linked by C—H...O interactions, forming sheet motifs running slightly off the (110) plane, together with an intermolecular interaction between head-to tail biphenyl groups, thus making the whole crystal packing a three-dimensional network. Intramolecular C—H...O hydrogen bonds are also observed.


2012 ◽  
Vol 68 (6) ◽  
pp. o1820-o1820 ◽  
Author(s):  
Songzhu Lin ◽  
Ruokun Jia ◽  
Aimin He

In the title compound, C19H13N5·C4H8O2·2H2O, the molecular skeleton of the 2,6-bis(benzimidazol-2-yl)pyridine (bbip) molecule is essentially planar (r.m.s. deviation = 0.023 Å). An extensive three-dimensional network of intermolecular N—H...O, O—H...O and O—H...N hydrogen bonds consolidates the crystal packing, which also exhibits π–π interactions between the five- and six-membered rings from neighbouring bbip molecules.


Sign in / Sign up

Export Citation Format

Share Document