scholarly journals Crystal structures of 2-aminopyridine citric acid salts: C5H7N2 +·C6H7O7 − and 3C5H7N2 +·C6H5O7 3−

2018 ◽  
Vol 74 (8) ◽  
pp. 1111-1116 ◽  
Author(s):  
Shet M. Prakash ◽  
S. Naveen ◽  
N. K. Lokanath ◽  
P. A. Suchetan ◽  
Ismail Warad

2-Aminopyridine and citric acid mixed in 1:1 and 3:1 ratios in ethanol yielded crystals of two 2-aminopyridinium citrate salts, viz. C5H7N2 +·C6H7O7 − (I) (systematic name: 2-aminopyridin-1-ium 3-carboxy-2-carboxymethyl-2-hydroxypropanoate), and 3C5H7N2 +·C6H5O7 3− (II) [systematic name: tris(2-aminopyridin-1-ium) 2-hydroxypropane-1,2,3-tricarboxylate]. The supramolecular synthons present are analysed and their effect upon the crystal packing is presented in the context of crystal engineering. Salt I is formed by the protonation of the pyridine N atom and deprotonation of the central carboxylic group of citric acid, while in II all three carboxylic groups of the acid are deprotonated and the charges are compensated for by three 2-aminopyridinium cations. In both structures, a complex supramolecular three-dimensional architecture is formed. In I, the supramolecular aggregation results from Namino—H...Oacid, Oacid...H—Oacid, Oalcohol—H...Oacid, Namino—H...Oalcohol, Npy—H...Oalcohol and Car—H...Oacid interactions. The molecular conformation of the citrate ion (CA3−) in II is stabilized by an intramolecular Oalcohol—H...Oacid hydrogen bond that encloses an S(6) ring motif. The complex three-dimensional structure of II features Namino—H...Oacid, Npy—H...Oacid and several Car—H...Oacid hydrogen bonds. In the crystal of I, the common charge-assisted 2-aminopyridinium–carboxylate heterosynthon exhibited in many 2-aminopyridinium carboxylates is not observed, instead chains of N—H...O hydrogen bonds and hetero O—H...O dimers are formed. In the crystal of II, the 2-aminopyridinium–carboxylate heterosynthon is sustained, while hetero O—H...O dimers are not observed. The crystal structures of both salts display a variety of hydrogen bonds as almost all of the hydrogen-bond donors and acceptors present are involved in hydrogen bonding.

2014 ◽  
Vol 70 (6) ◽  
pp. o670-o670
Author(s):  
A. Sundar ◽  
S. Ranjith ◽  
G. Rajagopal

In the title compound, C12H8BrClN2O3, the furan ring makes a dihedral angle of 17.2 (2)° with the six-membered ring. An intramolecular O–H...N hydrogen bond stabilizes the molecular conformation. In the crystal, N–H...O hydrogen bonds connect the molecules into chains running along thec-axis direction. The crystal packing is additionally stabilized by C—H...O interactions into a three-dimensional supramolecular architecture.


2015 ◽  
Vol 71 (12) ◽  
pp. o991-o992
Author(s):  
Kamel Ouari

In the title compound, C12H8BrN3O, the 4-bromophenol ring is coplanar with the planar imidazo[4,5-b]pyridine moiety (r.m.s deviation = 0.015 Å), making a dihedral angle of 1.8 (2)°. There is an intramolecular O—H...N hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linkedviaN—H...N and O—H...Br hydrogen bonds, forming undulating sheets parallel to (10-2). The sheets are linked by π–π interactions [inter-centroid distance = 3.7680 (17) Å], involving inversion-related molecules, forming a three-dimensional structure.


2019 ◽  
Vol 234 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Ligia R. Gomes ◽  
John N. Low ◽  
Nathasha R. de L. Correira ◽  
Thais C.M. Noguiera ◽  
Alessandra C. Pinheiro ◽  
...  

Abstract The crystal structures of four azines, namely 1-3-bis(4-methoxyphenyl)-2,3-diaza-1,4-butadiene, 1, 1,3-bis(2,3-dimethoxyphenyl)-2,3-diaza-1,4-butadiene, 2, 1,3-bis(2-hydroxy-3-methoxyphenyl)-2,3-diaza-1,4-butadiene, 3, and 1,3-bis(2-hydroxy-4-methoxyphenyl)-2,3-diaza-1,4-butadiene, 4, are reported. Molecules of 3 and 4, and both independent molecules of 2, Mol A and Mol B, possess inversion centers. The central C=N–N=C units in each molecule is planar with an (E,E) conformation. The intermolecular interactions found in the four compounds are C–H···O, C–H–N, C–H---π and π---π interactions. However, there is no consistent set of intermolecular interactions for the four compounds. Compound, 1, has a two-dimensional undulating sheet structure, generated from C–H···O and C–H···N intermolecular hydrogen bonds. The only recognized intermolecular interaction in 2 is a C–H···O hydrogen bond, which results in a zig-zag chain of alternating molecules, Mol A and Mol B. While 3 forms a puckered sheet of molecules, solely via C–H···π interactions, its isomeric compound, 4, has a more elaborate three-dimensional structure generated from a combination of C–H···O hydrogen bonds, C–H···π and π···π interactions. The findings in this study, based on both PLATON and Hirshfeld approaches, for the four representative compounds match well the reported structural findings in the literature of related compounds, which are based solely on geometric parameters.


2013 ◽  
Vol 69 (12) ◽  
pp. 1549-1552 ◽  
Author(s):  
Vladimir V. Chernyshev ◽  
Sergey Y. Efimov ◽  
Ksenia A. Paseshnichenko ◽  
Andrey A. Shiryaev

The title salt, C8H12NO+·C7H10NO5−, crystallizes in two polymorphic modifications,viz.monoclinic (M) and orthorhombic (O). The crystal structures of both polymorphic modifications have been established from laboratory powder diffraction data. The crystal packing motifs in the two polymorphs are different, but the conformations of the anions are generally similar. InM, the anions are linked by pairs of hydrogen bonds of the N—H...O and O—H...O types into chains along theb-axis direction, and neighbouring molecules within the chain are related by the 21screw axis. The cations link these chainsviaO—H...O and N—H...O hydrogen bonds into layers parallel to (001). InO, the anions are linked by O—H...O hydrogen bonds into helices along [001], and neighbouring molecules within the helix are related by the 21screw axis. The neighbouring helical turns are linked by N—H...O hydrogen bonds. The cations link the helicesviaO—H...O and N—H...O hydrogen bonds, thus forming a three-dimensional network.


2014 ◽  
Vol 70 (2) ◽  
pp. o112-o113
Author(s):  
N. R. Sajitha ◽  
M. Sithambaresan ◽  
M. R. Prathapachandra Kurup

The molecule of the title compound, C16H17N3O2S, adopts anEconformation with respect to the azomethine C=N bond. The hydrazinecarbothioamide fragment is close to planar, with a largest deviation from the least-squares plane of 0.079 (2) Å for the hydrazide N atom. This fragment forms a dihedral angle of 9.43 (9)° with the central benzene ring. The benzene rings are inclined to one another by 67.55 (12)°. The molecular conformation is stabilized by an intramolecular O—H...N hydrogen bond involving the azomethine N atom. In the crystal, molecules are linked through weak N—H...S and N—H...O hydrogen bonds into double ribbons along [010]. The crystal packing also features C—H...π interactions.


2012 ◽  
Vol 68 (4) ◽  
pp. o1084-o1084
Author(s):  
D. Kannan ◽  
M. Bakthadoss ◽  
R. Madhanraj ◽  
S. Murugavel

In the title compound, C25H22N2O3S, the sulfonyl-bound benzene ring forms dihedral angles of 36.8 (2) and 81.4 (2)°, respectively, with the formylbenzene and methylbenzene rings. The molecular conformation is stabilized by an intramolecular C—H...O hydrogen bond, which generates anS(5) ring motif. The crystal packing is stabilized by C—H...O hydrogen bonds, which generateC(11) chains along thebaxis. The crystal packing is further stabilized by π–π interactions [centroid–centroid distance = 3.927 (2) Å].


Author(s):  
Suchada Chantrapromma ◽  
Narissara Kaewmanee ◽  
Nawong Boonnak ◽  
Kan Chantrapromma ◽  
Hazem A. Ghabbour ◽  
...  

The title azastilbene derivative, C14H13NO2{systematic name: (E)-2-[(4-methoxybenzylidene)amino]phenol}, is a product of the condensation reaction between 4-methoxybenzaldehyde and 2-aminophenol. The molecule adopts anEconformation with respect to the azomethine C=N bond and is almost planar, the dihedral angle between the two substituted benzene rings being 3.29 (4)°. The methoxy group is coplanar with the benzene ring to which it is attached, the Cmethyl—O—C—C torsion angle being −1.14 (12)°. There is an intramolecular O—H...N hydrogen bond generating anS(5) ring motif. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming zigzag chains along [10-1]. The chains are linkedviaC—H...π interactions, forming a three-dimensional structure.


2014 ◽  
Vol 70 (6) ◽  
pp. o702-o703 ◽  
Author(s):  
Thammarse S. Yamuna ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
H. S. Yathirajan

In the cation of the title salt, C8H13N4+·C4H3O4−, the piperazinium ring adopts a slightly distorteded chair conformation. In the crystal, a single strong O—H...O intermolecular hydrogen bond links the anions, forming chains along thec-axis direction. The chains of anions are linked by the cations,viaN—H...O hydrogen bonds, forming sheets parallel to (100). These layers are linked by weak C—H...O hydrogen bonds, forming a three-dimensional structure. In addition, there are weak π–π interactions [centroid–centroid distance = 3.820 (9) Å] present involving inversion-related pyrimidine rings.


2014 ◽  
Vol 70 (5) ◽  
pp. o519-o519 ◽  
Author(s):  
Bhaskarachar Ravi Kiran ◽  
Bandrehalli Siddagangaiah Palakshamurthy ◽  
Giriyapura R. Vijayakumar ◽  
Hebbur Shivamurthy Bharath

In the title compound, C7H4F2O3, an intramolecular O—H...O hydrogen bond is observed. In the crystal, inversion dimers linked by pairs of O—H...O hydrogen bonds generateR22(8) ring motifs. These dimers are linked by C—H...O and C—H...F hydrogen bonds, forming sheets lying parallel to (30-1). The sheets are linked by aromatic π–π stacking interactions [inter-centroid distance = 3.7817 (9) Å], forming a three-dimensional structure.


Author(s):  
Dilovan S. Cati ◽  
Helen Stoeckli-Evans

The title compounds, C32H28N10O4· unknown solvent, (I), and C32H28N10O4, (II), are pyrazine-2,3,5,6-tetracarboxamide derivatives. In (I), the substituents are (pyridin-2-ylmethyl)carboxamide, while in (II), the substituents are (pyridin-4-ylmethyl)carboxamide. Both compounds crystallize in the monoclinic space groupP21/n, withZ′ = 1 for (I), andZ′ = 0.5 for (II). The whole molecule of (II) is generated by inversion symmetry, the pyrazine ring being situated about a center of inversion. In (I), the four pyridine rings are inclined to the pyrazine ring by 83.9 (2), 82.16 (18), 82.73 (19) and 17.65 (19)°. This last dihedral angle involves a pyridine ring that is linked to the adjacent carboxamide O atom by an intramolecular C—H...O hydrogen bond. In compound (II), the unique pyridine rings are inclined to the pyrazine ring by 33.3 (3) and 81.71 (10)°. There are two symmetrical intramolecular C—H...O hydrogen bonds present in (II). In the crystal of (I), molecules are linked by N—H...O and N—H...N hydrogen bonds, forming layers parallel to (10-1). The layers are linked by C—H...O and C—H...N hydrogen bonds, forming a three-dimensional framework. In the crystal of (II), molecules are linked by N—H...N hydrogen bonds, forming chains propagating along the [010] direction. The chains are linked by a weaker N—H...N hydrogen bond, forming layers parallel to the (101) plane, which are in turn linked by C—H...O hydrogen bonds, forming a three-dimensional structure. In the crystal of compound (I), a region of disordered electron density was treated with the SQUEEZE routine inPLATON[Spek (2015).Acta Cryst. C71, 9–18]. Their contribution was not taken into account during refinement. In compound (II), one of the pyridine rings is positionally disordered, and the refined occupancy ratio for the disordered Car—Car—Npyatoms is 0.58 (3):0.42 (3).


Sign in / Sign up

Export Citation Format

Share Document