scholarly journals Crystal structures of isomeric 3,5-dichloro-N-(2,3-dimethylphenyl)benzenesulfonamide, 3,5-dichloro-N-(2,6-dimethylphenyl)benzenesulfonamide and 3,5-dichloro-N-(3,5-dimethylphenyl)benzenesulfonamide

Author(s):  
K. Shakuntala ◽  
S. Naveen ◽  
N. K. Lokanath ◽  
P. A. Suchetan

The crystal structures of three isomeric compounds of formula C14H13Cl2NO2S, namely 3,5-dichloro-N-(2,3-dimethylphenyl)-benzenesulfonamide (I), 3,5-dichloro-N-(2,6-dimethylphenyl)benzenesulfonamide (II) and 3,5-dichloro-N-(3,5-dimethylphenyl)benzenesulfonamide (III) are described. The molecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The molecular conformation of (II) is stabilized by intramolecular C—H...O hydrogen bonds and C—H...π interactions. The crystal structure of (I) features N—H...O hydrogen-bondedR22(8) loops interconnectedvia C(7) chains of C—H...O interactions, forming a three-dimensional architecture. The structure also features π–π interactions [Cg...Cg= 3.6970 (14) Å]. In (II), N—H...O hydrogen-bondedR22(8) loops are interconnectedviaπ–π interactions [intercentroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to theaaxis. In (III), adjacentC(4) chains of N—H...O hydrogen-bonded molecules running parallel to [010] are connectedviaC—H...π interactions, forming sheets parallel to theabplane. Neighbouring sheets are linkedviaoffset π–π interactions [intercentroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.

2018 ◽  
Vol 74 (3) ◽  
pp. 351-359
Author(s):  
Miguel Angel Harvey ◽  
Sebastián Suarez ◽  
Pavel N. Zolotarev ◽  
Davide M. Proserpio ◽  
Ricardo Baggio

A nickel(II) coordination complex, bis[2,6-bis(1H-benzimidazol-2-yl-κN3)pyridine-κN]nickel(II) sulfate, [Ni(C19H13N5)2]SO4or [Ni(H2L)2]SO4, having four peripheral tetrahedrally oriented N—H donor units, combines with sulfate bridges to create hydrogen-bonded structures of varied dimensionality. The three crystal structures reported herein in the space groupsP212121,I\overline{4} andPccnare defined solely by strong charge-assisted N—H...O hydrogen bonds and contain disordered guests (water and dimethylformamide) that vary in size, shape and degree of hydrophilicity. Two of the compounds are channelled solids with three-dimensional structures, while the third is one-dimensional in nature. In spite of their differences, all three present a striking resemblance to the previously reported anhydrous relative [Guoet al.(2011).Chin. J. Inorg. Chem.27, 1517–1520], which is considered as the reference framework from which all three title compounds are derived. The hydrogen-bonded frameworks are described and compared using crystallographic and topological approaches.


2009 ◽  
Vol 65 (6) ◽  
pp. o1363-o1363 ◽  
Author(s):  
Durre Shahwar ◽  
M. Nawaz Tahir ◽  
M. Sharif Mughal ◽  
Muhammad Akmal Khan ◽  
Naeem Ahmad

In the title compound, C13H11NO2, the aromatic rings are oriented at a dihedral angle of 42.52 (12)°. The crystal structure is stabilized by intermolecular N—H...O hydrogen bonds, which form infinite one-dimensional polymeric chains extending along theaaxis. C—H...π interactions between the aromatic rings are also present.


Author(s):  
Bastian Tewes ◽  
Bastian Frehland ◽  
Roland Fröhlich ◽  
Bernhard Wünsch

In the title compound, C25H27NO4S, which crystallized as a racemate, the relative configuration of the adjacent OH and CH3groups on the azepine ring istrans. The seven-membered azepin ring has a chair-like conformation. The planar aromatic rings of the benzyl and tosylate moiety are inclined to the planar 3-benzazepine ring by 78.39 (15) and 77.03 (14)°, respectively, and to each another by 13.82 (15)°. In the crystal, molecules are linkedviaO—H...O and C—H...O hydrogen bonds, forming double-stranded chains along thea-axis direction. The chains are linkedviaC—H...π interactions, forming a three-dimensional architecture.


Author(s):  
Brock A. Stenfors ◽  
Richard J. Staples ◽  
Shannon M. Biros ◽  
Felix N. Ngassa

The title compound, C15H17NO2S, was synthesized via a substitution reaction between 4-methylbenzylamine and p-toluenesulfonyl chloride. In the crystal, N—H...O hydrogen bonds link the molecules, forming ribbons running along the b-axis direction. One of the aromatic rings hosts two intermolecular C—H...π interactions that link these hydrogen-bonded ribbons into a three-dimensional network.


2014 ◽  
Vol 70 (2) ◽  
pp. o204-o204 ◽  
Author(s):  
Dhouha Ben Hassen ◽  
Walid Rekik ◽  
Houcine Naïli ◽  
Tadeusz Lis ◽  
Roman Grobelny

In the crystal structure of the title salt, C7H12N22+·2NO3−, the nitrate ions are located in the vicinity of the protonated amine groups, accepting strong N—H...O hydrogen bonds. Each ammonium group is involved in a total of three such interactions with neighbouring nitrate ions, generating a three-dimensional network. In addition, there are π–π interactions between the aromatic rings of centrosymmetrically related diammonium moieties, with a centroid–centroid distance of 3.682 (1) Å.


2014 ◽  
Vol 70 (10) ◽  
pp. m341-m342
Author(s):  
Ya-Ping Li ◽  
Li-Ying Han ◽  
Julia Ming ◽  
Hu Zang ◽  
Guan-Fang Su

Two 4,4′-[1,3-phenylenebis(oxy)]dibenzoate anions bridge two 1,10-phenanthroline-chelated ZnIIcations about a center of inversion to generate the dinuclear title compound, [Zn2(C20H12O6)2(C12H8N2)2]·2H2O. The geometry about the ZnIIatom is a distorted octahedron. In the crystal, the molecules are connected by classical O—H...O hydrogen bonds, weak C—H...O hydrogen bonds and C—H...π interactions, forming a three dimensional network. π–π stacking is also observed between aromatic rings of adjacent molecules, centroid–centroid distances are 3.753 (2), 3.5429 (16) and 3.5695 (17) Å.


Author(s):  
Nutchanikan Phiromphu ◽  
Kittipong Chainok ◽  
Apisit Songsasen ◽  
Tanwawan Duangthongyou

In the title hydrated azo dye, C10H10N4OS·H2O, the benzene and thiazole, are nearly coplanar, with a dihedral angle between their mean planes of 4.69 (17)°. The aromatic rings on the –N=N– moiety exhibit a trans configuration. The crystal structure features many types of intermolecular interactions involving all the functional groups – strong hydrogen bonds (N...H and O...H), weak hydrogen bonds (C—H...O and C—H...N), C—H...π and π–π interactions – resulting in the formation of a three-dimensional framework.


2015 ◽  
Vol 71 (11) ◽  
pp. 1388-1391
Author(s):  
Vinola Z. Rodrigues ◽  
C. P. Preema ◽  
S. Naveen ◽  
N. K. Lokanath ◽  
P. A. Suchetan

Crystal structures of twoN-(aryl)arylsulfonamides, namely, 4-methoxy-N-(4-methylphenyl)benzenesulfonamide, C14H15NO3S, (I), andN-(4-fluorophenyl)-4-methoxybenzenesulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzenesulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N—H...O hydrogen bonds form infiniteC(4) chains extended in [010], and intermolecular C—H...πarylinteractions link these chains into layers parallel to theabplane. The crystal structure of (II) features N—H...O hydrogen bonds forming infinite one dimensionalC(4) chains along [001]. Further, a pair of C—H...O intermolecular interactions consolidate the crystal packing of (II) into a three-dimensional supramolecular architecture.


Author(s):  
Manuel Stapf ◽  
Betty Leibiger ◽  
Anke Schwarzer ◽  
Monika Mazik

The title compounds, C23H25Br2NO2 (1) and C31H29BrN2O4 (2), crystallize in the space group P21/n with two (1-A and 1-B) and one molecules, respectively, in the asymmetric unit of the cell. The molecular conformation of these compounds is stabilized by intramolecular C—H...O hydrogen bonds and C—H...N or C—H...π interactions. The crystal structure of 1 features a relatively strong Br...O=C halogen bond, which is not observed in the case of 2. Both crystal structures are characterized by the presence of C—H...Br hydrogen bonds and numerous intermolecular C—H...O hydrogen-bonding interactions.


2012 ◽  
Vol 68 (9) ◽  
pp. o351-o354 ◽  
Author(s):  
Magdalena Wilk ◽  
Jan Janczak ◽  
Veneta Videnova-Adrabinska

The asymmetric unit of the title compound, 3C10H12N22+·2C10H11N2+·8C6H5NO5P−, contains one and a half naphthalene-1,5-diaminium cations, in which the half-molecule has inversion symmetry, one 5-aminonaphthalen-1-aminium cation and four hydrogen (5-carboxypyridin-3-yl)phosphonate anions. The crystal structure is layered and consists of hydrogen-bonded anionic monolayers between which the cations are arranged. The acid monoanions are organized into one-dimensional chains along the [101] directionviahydrogen bonds established between the phosphonate sites. (C)O—H...Npyhydrogen bonds (py is pyridine) crosslink the chains to form an undulating (010) monolayer. The cations serve both to balance the charge of the anionic network and to connect neighbouring layersviamultiple hydrogen bonds to form a three-dimensional supramolecular architecture.


Sign in / Sign up

Export Citation Format

Share Document