scholarly journals Crystal structure of dilithium potassium citrate, Li2KC6H5O7 determined from powder diffraction data and DFT calculations

Author(s):  
Andrew J. Cigler ◽  
James A. Kaduk

The crystal structure of poly[μ-citrato-dilithium(I)potassium(I)], [Li2K(C6H5O7)] n , has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The citrate anion triply chelates to the K+ cation through the hydroxyl group, the central carboxylate, and the terminal carboxylate. The KO7 coordination polyhedra share edges, forming chains parallel to the a axis. These chains share edges with one tetrahedral Li ion, and are bridged by edge-sharing pairs of the second tetrahedral Li ion, forming layers parallel to the ac plane.

2016 ◽  
Vol 72 (8) ◽  
pp. 1159-1162 ◽  
Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of anhydrous tripotassium citrate, [K3(C6H5O7)]n, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The three unique potassium cations are 6-, 8-, and 6-coordinate (all irregular). The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework, with channels running parallel to thecaxis. The only hydrogen bond is an intramolecular one involving the hydroxy group and the central carboxylate group, with graph-set motifS(5).


2020 ◽  
Vol 76 (10) ◽  
pp. 1611-1616
Author(s):  
James A. Kaduk

The crystal structures of magnesium hydrogen citrate dihydrate, Mg(HC6H5O7)(H2O)2, (I), and bis(dihydrogen citrato)magnesium, Mg(H2C6H5O7)2, (II), have been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. In (I), the citrate anion occurs in the trans, trans-conformation, and triply chelates to the Mg cation. In (II), the citrate anion is trans, gauche, and doubly chelates to the Mg cation. In both compounds the Mg cation coordination polyhedron is an octahedron. In (I), the MgO6 coordination polyhedra are isolated, while in (II), they share edges to form chains. Strong O—H...O hydrogen bonds are prominent in the two structures, as well as in the previously reported magnesium citrate decahydrate.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of trirubidium citrate, 3Rb+·C6H5O73−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two independent Rb+cations are seven- and eight-coordinate, with bond-valence sums of 0.99 and 0.92 valence units. The coordination polyhedra share edges and corners to form a three-dimensional framework. The only hydrogen bond is an intramolecular one between the hydroxy group and the central carboxylate, with graph setS(5). The hydrophobic methylene groups lie in pockets in the framework.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of a second polymorph of sodium dihydrogen citrate, Na+·H2C6H5O7−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The powder pattern of the commercial sample used in this study did not match that corresponding to the known crystal structure [Gluskeret al.(1965).Acta Cryst.19, 561–572; refcode NAHCIT]. In this polymorph, the [NaO7] coordination polyhedra form edge-sharing chains propagating along theaaxis, while in NAHCIT the octahedral [NaO6] groups form edge-sharing pairs bridged by two hydroxy groups. The most notable difference is that in this polymorph one of the terminal carboxyl groups is deprotonated, while in NAHCIT the central carboxylate group is deprotonated, as is more typical.


2020 ◽  
Vol 76 (10) ◽  
pp. 1566-1571
Author(s):  
Andrew J. Cigler ◽  
James A. Kaduk

The crystal structures of the isostructural compounds dipotassium rubidium citrate monohydrate, K2RbC6H5O7(H2O), and potassium dirubidium citrate monohydrate, KRb2C6H5O7(H2O), have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The compounds are isostructural to K3C6H5O7(H2O) and Rb3C6H5O7(H2O), but exhibit different degrees of ordering of the K and Rb cations over the three metal-ion sites. The K and Rb site occupancies correlate well to both the bond-valence sums and the DFT energies of ordered cation systems. The MO6 and MO7 coordination polyhedra share edges to form a three-dimensional framework. The water molecule acts as a donor in two strong charge-assisted O—H...O hydrogen bonds to carboxylate groups. The hydroxyl group of the citrate anion forms an intramolecular hydrogen bond to one of the central carboxylate oxygen atoms.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of caesium dihydrogen citrate, Cs+·H2C6H5O7−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The coordination polyhedra of the nine-coordinate Cs+cations share edges to form chains along thea-axis. These chains are linked by corners along thec-axis. The un-ionized carboxylic acid groups form two different types of hydrogen bonds; one forms a helical chain along thec-axis, and the other is discrete. The hydroxy group participates in both intra- and intermolecular hydrogen bonds.


2014 ◽  
Vol 78 (2) ◽  
pp. 347-360 ◽  
Author(s):  
F. Colombo ◽  
J. Rius ◽  
O. Vallcorba ◽  
E. V. Pannunzio Miner

AbstractThe crystal structure of sarmientite, Fe23+ (AsO4)(SO4)(OH)·5H2O, from the type locality (Santa Elena mine, San Juan Province, Argentina), was solved and refined from in-house powder diffraction data (CuKα1,2 radiation). It is monoclinic, space group P21/n, with unit-cell dimensions a = 6.5298(1), b = 18.5228(4), c = 9.6344(3) Å, β = 97.444(2)º, V = 1155.5(5) Å3, and Z = 4. The structure model was derived from cluster-based Patterson-function direct methods and refined by means of the Rietveld method to Rwp = 0.0733 (X2 = 2.20). The structure consists of pairs of octahedral-tetrahedral (Fe−As) chains at (y,z) = (0,0) and (½,½), running along a. There are two symmetry-independent octahedral Fe sites. The Fe1 octahedra share two corners with the neighbouring arsenate groups. Both individual chains are related by a symmetry centre and joined by two symmetry-related Fe2 octahedra. Each Fe2 octahedron shares three corners with double-chain polyhedra (O3, O4 with arsenate groups; the O8 hydroxyl group with the Fe1 octahedron) and one corner (O11) with the monodentate sulfate group. The coordination of the Fe2 octahedron is completed by two H2O molecules (O9 and O10). There is also a complex network of H bonds that connects polyhedra within and among chains. Raman and infrared spectra show that (SO4)2− tetrahedra are strongly distorted.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of the title compound, 3Rb+·C6H5O73−·H2O, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The hydroxy group participates in an intramolecular hydrogen bond to the deprotonated central carboxylate group with graph-set motifS(5). The water molecule acts as a hydrogen-bond donor to both terminal and central carboxylate O atoms. The three independent rubidium cations are seven-, six- and six-coordinate, with bond-valence sums of 0.84, 1.02, and 0.95, respectively. In the extended structure, their polyhedra share edges and corners to form a three-dimensional network. The hydrophobic methylene groups occupy channels along thebaxis.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of dirubidium hydrogen citrate, 2Rb+·HC6H5O72−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The un-ionized carboxylic acid group forms helical chains of very strong hydrogen bonds (O...O ∼ 2.42 Å) along thebaxis. The hydroxy group participates in a chain of intra- and intermolecular hydrogen bonds along thecaxis. These hydrogen bonds result in corrugated hydrogen-bonded layers in thebcplane. The Rb+cations are six-coordinate, and share edges and corners to form layers in theabplane. The interlayer contacts are composed of the hydrophobic methylene groups.


2019 ◽  
Vol 34 (4) ◽  
pp. 368-373 ◽  
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of prednicarbate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Prednicarbate crystallizes in space group P212121 (#19) with a = 7.69990(3), b = 10.75725(3), c = 31.36008(11) Å, V = 2597.55(1) Å3, and Z = 4. In the crystal structure the long axis of the steroid ring system lies roughly parallel to the c-axis. The oxygenated side chains are orientated roughly perpendicular to the steroid ring system and are adjacent to each other, parallel to the ab-plane. The only traditional hydrogen bond donor in the prednicarbate molecule is the hydroxyl group O32–H33, but this does not participate in an O–H···O hydrogen bond. The nearest oxygen atoms to O32 are symmetry-related O32 at 4.495 Å, precluding the expected O–H···O hydrogen bond. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


Sign in / Sign up

Export Citation Format

Share Document