scholarly journals New refinement of the crystal structure of Zn(NH3)2Cl2 at 100 K

2019 ◽  
Vol 75 (9) ◽  
pp. 1386-1388
Author(s):  
Trpimir Ivšić ◽  
David Wenhua Bi ◽  
Arnaud Magrez

The crystal structure of [ZnCl2(NH3)2], diamminedichloridozinc, was re-investigated at low temperature, revealing the positions of the hydrogen atoms and thus a deeper insight into the hydrogen-bonding scheme in the crystal packing. In comparison with previous crystal structure determinations [MacGillavry & Bijvoet (1936). Z. Kristallogr. 94, 249–255; Yamaguchi & Lindqvist (1981). Acta Chem. Scand. 35, 727–728], an improved precision of the structural parameters was achieved. In the crystal, tetrahedral [Zn(NH3)2Cl2] units (point-group symmetry mm2) are linked through N—H...Cl hydrogen bonds into a three-dimensional network.

Author(s):  
Thomas G. Müller ◽  
Florian Kraus

Di-μ-thiocyanato-bis[diamminesilver(I)], [Ag2(μ-SCN)2(NH3)4], was synthesized by the reaction of AgSCN with anhydrous liquid ammonia. In the binuclear molecule, the AgIatom is coordinated by two ammine ligands and the S atom of one thiocyanate ligand. Two of these [Ag(SCN)(NH3)2] units are bridged by the S atoms of the thiocyanate anions at longer distances, leading to a dimer with point group symmetryC2. The distance between the AgIatoms in the dimer is at 3.0927 (6) Å within the range of argentophilic interactions. The crystal structure displays N—H...N and N—H...S hydrogen-bonding interactions that build up a three-dimensional network.


2015 ◽  
Vol 71 (11) ◽  
pp. 1408-1410 ◽  
Author(s):  
Noé Makon ma Houga ◽  
Frédéric Capet ◽  
Justin Nenwa ◽  
Gouet Bebga ◽  
Michel Foulon

In the title hybrid salt, (C7H11N2)3[Cr(C2O4)3]·4H2O, the central CrIIIion of the complex anion (point group symmetry 2) is coordinated by six O atoms from three chelating oxalate(2−) ligands in a slightly distorted octahedral coordination sphere. The Cr—O bond lengths vary from 1.9577 (11) to 1.9804 (11) Å, while the chelate O—Cr—O angles range from 82.11 (6) to 93.41 (5)°. The 4-(dimethylamino)pyridinium cations (one situated in a general position and one on a twofold rotation axis) are protonated at the pyridine N atoms. In the crystal, N—H...O and O—H...O hydrogen bonds link the cations and anions into a three-dimensional network. π–π interactions between the pyridine rings of adjacent cations provide additional stabilization of the crystal packing, with the closest centroid-to-centroid distances being 3.541 (1) and 3.575 (1) Å.


2014 ◽  
Vol 70 (12) ◽  
pp. 480-482 ◽  
Author(s):  
Erik Hennings ◽  
Horst Schmidt ◽  
Wolfgang Voigt

The title compound, [SnCl4(H2O)2]·6H2O, was crystallized according to the solid–liquid phase diagram at lower temperatures. It is built-up of SnCl4(H2O)2octahedral units (point group symmetry 2) and lattice water molecules. An intricate three-dimensional network of O—H...O and O—H...Cl hydrogen bonds between the complex molecules and the lattice water molecules is formed in the crystal structure.


Author(s):  
Kazunori Teramoto ◽  
Takeshi Kawasaki ◽  
Toshikazu Nishide ◽  
Yasuhisa Ikeda

The crystal structure of the title complex, [Fe(C12H8N2)3][(CF3SO2)2N]2·H2O, is constructed by one octahedral [Fe(phen)3]2+(phen = 1,10-phenanthroline) cation (point group symmetry 2), two Tf2N−[bis(trifluoromethylsulfonyl)imide] anions, and one water molecule of crystallization (point group 2). The Fe—N bond lengths are indicative of ad6low-spin state for the FeIIion in the complex. The dihedral angle between the phen ligands in the cation is 87.64 (6)°. The Tf2N−counter-anion is non-coordinating, with the –CF3groups arranged in atransfashion with respect to each other, leading to ananti,anticonformation of the –CF3groups and –SO2N– moieties relative to the S—C bonds. The water molecule of crystallization connects two O atoms of the Tf2N−anions through weak hydrogen bonds. C—H...O hydrogen-bonding interactions are also observed, consolidating the packing of the molecules into a three-dimensional network structure.


2015 ◽  
Vol 71 (12) ◽  
pp. 1467-1470
Author(s):  
Elaine P. Boron ◽  
Kelsey K. Carter ◽  
Jacqueline M. Knaust

The search for novel lanthanide coordination networks using pyrazineN,N′-dioxide (pzdo, C4H4N2O2) as a structure-directing unit, led to the synthesis and the structure determination of the title compound, [Na2(C4H4N2O2)(H2O)6][B(C6H5)4]2·C4H4N2O2·2H2O. The crystal structure is comprised of discrete [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+cations and tetraphenylborate anions, as well as pzdo and H2O solvent molecules. The dinuclear cation is located about a twofold rotation axis, and the symmetry-related NaIatoms display a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of a bridging pzdo ligand. In the crystal, O—H...O hydrogen bonds link the dinuclear cation and solvent pzdo molecules (point-group symmetry -1) into rectangular grid-like layers parallel to thebcplane. Additional C—H...O, O—H...O, C—H...π and O—H...π interactions link the anion and solvent water molecules to the layers. The layers are further linked into a three-dimensional network through a combination of C—H...π and O—H...π hydrogen bonds involving the tetraphenylborate anion.


Author(s):  
Maksym Seredyuk ◽  
M. Carmen Muñoz ◽  
José A. Real ◽  
Turganbay S. Iskenderov

The title complex, poly[dodeca-μ-cyanido-diiron(III)triplatinum(II)], [FeIII2{PtII(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN)4]2−anions (point group symmetry 2/m) bridging cationic [FeIIIPtII(CN)4]+∞layers extending in thebcplane. The FeIIatoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtIIatoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN)4]+∞layers corresponds to the lengtha/2 = 8.0070 (3) Å, and the separation between two neighbouring PtIIatoms of the bridging [PtII(CN)4]2−groups corresponds to the length of thecaxis [7.5720 (2) Å]. The structure is porous with accessible voids of 390 Å3per unit cell.


Author(s):  
Ana Paula Lopes de Melo ◽  
Leandro Bresolin ◽  
Bianca Barreto Martins ◽  
Vanessa Carratu Gervini ◽  
Adriano Bof de Oliveira

The reaction in methanol of CuII acetate monohydrate with 5-fluoroisatin 3-oxime deprotonated with KOH in a 1:2 molar ratio and recrystallization from pyridine yielded the title compound, [Cu(C8H4FN2O2)2(C5H5N)2]. In the centrosymmetric complex, the anionic form of the isatin oxime acts as a κ2 N,O donor, building five-membered metallarings. The CuII cation is sixfold coordinated in a slightly distorted octahedral environment by two trans, equatorial, anionic isatin derivatives and two trans pyridine ligands in axial positions. The complexes are linked by hydrogen bonding into a three-dimensional network, which is also stabilized by π–π stacking interactions [centroid-to-centroid distance = 3.7352 (9) Å] and C—H...π contacts. The Hirshfeld surface analysis indicates that the major contributions for the crystal packing are H...H (31.80%), H...C (24.30%), H...O (15.20%) and H...F (10.80%). This work is the second report in the literature of a crystal structure of a coordination compound with isatin 3-oxime ligands (coordination chemistry).


Author(s):  
Nataliia Yu. Strutynska ◽  
Marina A. Bondarenko ◽  
Ivan V. Ogorodnyk ◽  
Vyacheslav N. Baumer ◽  
Nikolay S. Slobodyanik

Potassium rubidium cobalt(II)/titanium(IV) tris(orthophosphate), Rb0.743K0.845Co0.293Ti1.707(PO4)3, has been obtained using a high-temperature crystallization method. The obtained compound has a langbeinite-type structure. The three-dimensional framework is built up from mixed-occupied (Co/TiIV)O6octahedra (point group symmetry .3.) and PO4tetrahedra. The K+and Rb+cations are statistically distributed over two distinct sites (both with site symmetry .3.) in the large cavities of the framework. They are surrounded by 12 O atoms.


1988 ◽  
Vol 43 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Walter Frank ◽  
Thomas Stetzer ◽  
Ludwig Heck

The title compound 1 can be obtained from an aqueous solution of aquopentaammine rhodium(III) dithionate and hydroxopentaammine rhodium(III) dithionate. The crystal structure has been determined from single crystal X-ray diffraction data and refined to R = 0.035 for 4390 unique reflections. Crystal data: monoclinic, space group P21/c, a = 1300.9(5) pm. b = 1472.3(6) pm. c = 1478.8(9) pm, β = 106.20(4)°, Z = 4.In the crystal dinuclear rhodium cations with point group symmetry 1 (C1) are found. A central μ-H3O2-bridge is formed by strong hydrogen bonding between aquo and hydroxo ligands; this bridge is additionally coordinated by two molecules of water. The entire bridging system is therefore H7O4-(H3O2- · 2 H2O). O-O distances characterizing the strength of the three hydrogen bonds within this new kind of structural unit are O(H2O-Rh 1)-O(HO-Rh2): 248 pm. O(H2O-Rh 1)-O(H2Oa): 273 pm, O(HO-Rh2)-O(H2Ob): 287 pm. The hydrogen atoms involved in these bridges have been located. The small difference in the Rh 1-O(H2O) - (205.4(3) pm) and Rh2-O(OH)- (204.3(3) pm) distances indicates that the entire H7O4-- moiety serves as a μ-bridging unit between Rh 1 and Rh 2


2014 ◽  
Vol 70 (12) ◽  
pp. 510-514 ◽  
Author(s):  
Erik Hennings ◽  
Horst Schmidt ◽  
Wolfgang Voigt

The title compounds, strontium perchlorate trihydrate {di-μ-aqua-aquadi-μ-perchlorato-strontium, [Sr(ClO4)2(H2O)3]n}, strontium perchlorate tetrahydrate {di-μ-aqua-bis(triaquadiperchloratostrontium), [Sr2(ClO4)4(H2O)8]} and strontium perchlorate nonahydrate {heptaaquadiperchloratostrontium dihydrate, [Sr(ClO4)2(H2O)7]·2H2O}, were crystallized at low temperatures according to the solid–liquid phase diagram. The structures of the tri- and tetrahydrate consist of Sr2+cations coordinated by five water molecules and four O atoms of four perchlorate tetrahedra in a distorted tricapped trigonal–prismatic coordination mode. The asymmetric unit of the trihydrate contains two formula units. Two [SrO9] polyhedra in the trihydrate are connected by sharing water molecules and thus forming chains parallel to [100]. In the tetrahydrate, dimers of two [SrO9] polyhedra connected by two sharing water molecules are formed. The structure of the nonahydrate contains one Sr2+cation coordinated by seven water molecules and by two O atoms of two perchlorate tetrahedra (point group symmetry ..m), forming a tricapped trigonal prism (point group symmetrym2m). The structure contains additional non-coordinating water molecules, which are located on twofold rotation axes. O—H...O hydrogen bonds between the water molecules as donor and ClO4tetrahedra and water molecules as acceptor groups lead to the formation of a three-dimensional network in each of the three structures.


Sign in / Sign up

Export Citation Format

Share Document