temperature crystallization
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 75)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ramashanker Gupta ◽  
Vinay Gupta ◽  
Ram Datt ◽  
Sandeep Arya ◽  
Animesh Pandey ◽  
...  

In this work, the growth of formamidinium (FA) based mixed halide perovskite single-crystal via inverse temperature crystallization method is investigated and characterized to detect its photosensitive properties. The structural characterization...


2021 ◽  
pp. 2107850
Author(s):  
Tian Du ◽  
Thomas J. Macdonald ◽  
Ruo Xi Yang ◽  
Meng Li ◽  
Zhongyao Jiang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4242
Author(s):  
Tianliang Feng ◽  
Yangzhou Li ◽  
Liang Fang ◽  
Zhenming Chen

As artificial marble is abundant and widely used in residential and commercial fields, the resource utilization of artificial marble wastes (AMWs) has become extremely important in order to protect the environment. In this paper, polybutylene terephthalate/artificial marble wastes (PBT/AMWs) composites were prepared by melt blending to maximize resource utilization and increase PBT performance. The research results showed that the filling of AMWs was beneficial to the improvement of PBT-related performance. X-ray diffraction analysis results indicated that after filling AMWs into the PBT matrix, the crystal structure of PBT was not changed. Heat deflection temperature (HDT) analysis results indicated that the HDT of PBT composites with 20 wt% AMWs reached 66.68 °C, which was 9.12 °C higher than that of neat PBT. Differential scanning calorimetry analysis results showed that heterogeneous nucleation could be well achieved when the filling content was 15 wt%; impact and scanning electron microscope analysis results showed that due to the partial core-shell structure of the AMWs, the impact strength of PBT was significantly improved after filling. When the filling amount was 20 wt%, the impact strength of the PBT composites reached 23.20 kJ/m2, which was 17.94 kJ/m2 higher than that of neat PBT. This research will not only provide new insights into the efficient and high-value utilization of AMWs, but also provide a good reference for improved applications of other polymers.


2021 ◽  
Vol 3 (1) ◽  
pp. 35-43
Author(s):  
Miftahul Wahidatun Ni’mah ◽  
Diah Dwi Lestari ◽  
Ayuni Rizma Maulida ◽  
Umar Hafidz Asy'ari Hasbullah

Coffee is one of Indonesia's leading plantation commodities, which is ranked third in the world. Currently, coffee-based drinks have become a lifestyle in the millennial era. The high interest in coffee affects the economy of the community. Various efforts were made to further encourage the level of coffee consumption, especially in the form of beverages. On the other hand, it is necessary to diversify the product by highlighting the technology side, such as making effervescent which is easier, more practical, and can be enjoyed directly with cold water. Effervescent is known as a product that can cause gas bubbles as a result of the reaction of acids and bases when dissolved in water. The resulting gas bubbles are carbon dioxide which gives a sparkling effect (a taste sensation like sparkling water). The use of coffee as an effervescent raw material is related to its taste, bioactive compounds, and antioxidants. Coffee extract powder can be made from robusta and arabica coffee roasted at medium level with low-temperature crystallization, spray drying, freeze drying, and vacuum drying. Other materials that need to be added such as acid sources, bases, fillers, and binders can affect the effervescent characteristics such as tablet hardness, moisture content, hygroscopicity, and dissolution time. The recommended composition is citric acid, sodium bicarbonate, dextrin, and PVP (Polyvinilpyrrolydone).


Author(s):  
Dora Janovszky ◽  
Maria Sveda ◽  
Anna Sycheva ◽  
Ferenc Kristaly ◽  
Ferenc Zámborszky ◽  
...  

AbstractA remarkable number of scientific papers are available in the literature about the bulk amorphous alloys and metallic glasses. Today, DSC is an essential tool for amorphous alloys research and development, and of course for quality assurance. In many cases, users seek to examine the determination of only one or two properties, although much more information can be obtained from the measurements. The research involved structural relaxation, Curie temperature, glass temperature, crystallization, phase separation, nanocrystalline volume fraction, melting point and liquidus temperature determination subjects and kinetics of microstructural transformations induced by thermal treatment. We collected and present the information that can be obtained with this technique and draws the reader’s attention to some potential problems related to data interpretation.


Sign in / Sign up

Export Citation Format

Share Document