scholarly journals 2-[(1E)-[(Z)-2-({[(1Z)-[(E)-2-[(2-Hydroxyphenyl)methylidene]hydrazin-1-ylidene]({[(4-methylphenyl)methyl]sulfanyl})methyl]disulfanyl}({[(4-methylphenyl)methyl]sulfanyl})methylidene)hydrazin-1-ylidene]methyl]phenol: crystal structure, Hirshfeld surface analysis and computational study

2020 ◽  
Vol 76 (8) ◽  
pp. 1245-1250
Author(s):  
Georgiana Paulus ◽  
Huey Chong Kwong ◽  
Karen A. Crouse ◽  
Edward R. T. Tiekink

The complete molecule of the title hydrazine carbodithioate derivative, C32H30N4O2S4, is generated by a crystallographic twofold axis that bisects the disulfide bond. The molecule is twisted about this bond with the C—S—S—C torsion angle of 90.70 (8)° indicating an orthogonal relationship between the symmetry-related halves of the molecule. The conformation about the imine bond [1.282 (2) Å] is E and there is limited delocalization of π-electron density over the CN2C residue as there is a twist about the N—N bond [C—N—N—C torsion angle = −166.57 (15)°]. An intramolecular hydroxyl-O—H...N(imine) hydrogen bond closes an S(6) loop. In the crystal, methylene-C—H...π(tolyl) contacts assemble molecules into a supramolecular layer propagating in the ab plane: the layers stack without directional interactions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of H...H contacts, which contribute 46.7% of all contacts followed by H...C/C...H contacts [25.5%] reflecting, in part, the C—H...π(tolyl) contacts. The calculation of the interaction energies confirm the importance of the dispersion term and the influence of the stabilizing H...H contacts in the inter-layer region.

Author(s):  
Ming Yueh Tan ◽  
Huey Chong Kwong ◽  
Karen A. Crouse ◽  
Thahira B. S. A. Ravoof ◽  
Edward R. T. Tiekink

The title thiourea derivative, C17H19N3OS, adopts a U-shaped conformation with the dihedral angle between the terminal aromatic rings being 73.64 (5)°. The major twist in the molecule occurs about the ethane bond with the Ci—Ce—Ce—Cb torsion angle being −78.12 (18)°; i = imine, e = ethane and b = benzene. The configuration about the imine bond is E, the N-bound H atoms lie on opposite sides of the molecule and an intramolecular amine-N—H...N(imine) hydrogen bond is evident. In the molecular packing, hydroxyl-O—H...S(thione) and amine-N—H...O hydrogen bonding feature within a linear, supramolecular chain. The chains are connected into a layer in the ab plane by a combination of methylene-C—H...S(thione), methylene-C—H...O(hydroxyl), methyl-C—H...π(phenyl) and phenyl-C—H...π(hydroxybenzene) interactions. The layers stack without directional interactions between them. The analysis of the calculated Hirshfeld surface highlights the presence of weak methyl-C—H...O(hydroxyl) and H...H interactions in the inter-layer region. Computational chemistry indicates that dispersion energy is the major contributor to the overall stabilization of the molecular packing.


2020 ◽  
Vol 76 (7) ◽  
pp. 1080-1086
Author(s):  
Sofia Dallasta Pedroso ◽  
Ignez Caracelli ◽  
Julio Zukerman-Schpector ◽  
Monica Soto-Monsalve ◽  
Regina H. De Almeida Santos ◽  
...  

The title compound, C23H24N2O9, is a tetra-substituted pyrrolidine derivative with a twisted conformation, with the twist evident in the C—C bond bearing the adjacent acetyloxy substituents. These are flanked on one side by a C-bound 4-methoxyphenyl group and on the other by a methylene group. The almost sp 2-N atom [sum of angles = 357°] bears a 4-nitrobenzyloxycarbonyl substituent. In the crystal, ring-methylene-C—H...O(acetyloxy-carbonyl) and methylene-C—H...O(carbonyl) interactions lead to supramolecular layers lying parallel to (\overline{1}01); the layers stack without directional interactions between them. The analysis of the calculated Hirshfeld surfaces indicates the combined importance of H...H (42.3%), H...O/O...H (37.3%) and H...C/C...H (14.9%) surface contacts. Further, the interaction energies, largely dominated by the dispersive term, point to the stabilizing influence of H...H and O...O contacts in the inter-layer region.


Author(s):  
David Chukwuma Izuogu ◽  
Jonnie Niyi Asegbeloyin ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

The X-ray crystal structure of the title phthalazin-1-one derivative, C17H16N2O3S {systematic name: 2-[(2,4,6-trimethylbenzene)sulfonyl]-1,2-dihydrophthalazin-1-one}, features a tetrahedral sulfoxide-S atom, connected to phthalazin-1-one and mesityl residues. The dihedral angle [83.26 (4)°] between the organic substituents is consistent with the molecule having the shape of the letter V. In the crystal, phthalazinone-C6-C—H...O(sulfoxide) and π(phthalazinone-N2C4)–π(phthalazinone-C6) stacking [inter-centroid distance = 3.5474 (9) Å] contacts lead to a linear supramolecular tape along the a-axis direction; tapes assemble without directional interactions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of the C—H...O and π-stacking interactions but, also H...H and C—H...C contacts. The calculation of the interaction energies indicate the importance of dispersion terms with the greatest energies calculated for the C—H...O and π-stacking interactions.


Author(s):  
Sang Loon Tan ◽  
Edward R. T. Tiekink

The molecular structure of the title bis-pyridyl substituted diamide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methylene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intramolecular amide-N—H...O(carbonyl) hydrogen bonds are formed, each closing an S(5) loop. Supramolecular tapes are formed in the crystal via amide-N—H...O(carbonyl) hydrogen bonds and ten-membered {...HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water molecules via water-O—H...N(pyridyl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methylene-C—H...O(water) and methylene-C—H...π(pyridyl) interactions, give rise to a layer parallel to (10\overline{1}); the layers stack without directional interactions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding interactions, and to the significant influence of the water molecule of crystallization upon the molecular packing. The analysis also indicates the contribution of methylene-C—H...O(carbonyl) and pyridyl-C—H...C(carbonyl) contacts to the stability of the inter-layer region. The calculated interaction energies are consistent with importance of significant electrostatic attractions in the crystal.


2019 ◽  
Vol 75 (8) ◽  
pp. 1133-1139 ◽  
Author(s):  
Sang Loon Tan ◽  
Nathan R. Halcovitch ◽  
Edward R. T. Tiekink

The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide molecule: N,N′-bis(pyridin-4-ylmethyl)ethanediamide], comprises a half molecule of each constituent as each is disposed about a centre of inversion. In the oxalamide molecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intramolecular amide-N—H...O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the molecule adopts an antiperiplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supramolecular layers parallel to (10\overline{2}) are generated owing the formation of amide-N—H...N(pyridyl) hydrogen bonds. The layers stack encompassing benzene molecules which provide the links between layers via methylene-C—H...π(benzene) and benzene-C—H...π(pyridyl) interactions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H...π contacts (dispersion forces).


2019 ◽  
Vol 75 (10) ◽  
pp. 1423-1428 ◽  
Author(s):  
Rohit B. Manawar ◽  
Mitesh B. Gondaliya ◽  
Manish K. Shah ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the molecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hydroxybenzene and chlorobenzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N—N bond [the C—N—N—C torsion angle = −172.7 (2)°]. An intramolecular hydroxy-O—H...N(imine) hydrogen bond closes an S(6) loop. In the crystal, π–π stacking interactions between hydroxy- and chlorobenzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supramolecular chain propagating along the b-axis direction; the chains pack without directional interactions between them. The calculated Hirshfeld surfaces point to the importance of H...H and Cl...H/H...Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl...H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned π–π stacking interactions contribute 12.0% to the overall surface contacts. The calculation of the interaction energies in the crystal indicates significant contributions from the dispersion term.


Author(s):  
Enis Nadia Md Yusof ◽  
Huey Chong Kwong ◽  
Thiruventhan Karunakaran ◽  
Thahira B. S. A. Ravoof ◽  
Edward R. T. Tiekink

The title diorganotin Schiff base derivative, [Sn(C4H9)2(C15H13N3O2S)], features a penta-coordinated tin centre defined by the N,O,S-donor atoms of the di-anionic Schiff base ligand and two methylene-C atoms of the n-butyl substituents. The resultant C2NOS donor set defines a geometry intermediate between trigonal–bipyramidal and square-pyramidal. In the crystal, amine-N—H...O(methoxy) hydrogen bonding is found in a helical, supramolecular chain propagating along the b-axis direction. The chains are assembled into a layer parallel to (\overline{1}01) with methylene-C—H...π(phenyl) interactions prominent; layers stack without directional interactions between them. The analysis of the calculated Hirshfeld surface showed the presence of weak methylene-C—H...π(phenyl) interactions and short H...H contacts in the inter-layer region. Consistent with the nature of the identified contacts, the stabilization of the crystal is dominated by the dispersion energy term.


Author(s):  
Nasiba Pirnazarova ◽  
Ubaydullo Yakubov ◽  
Sevara Allabergenova ◽  
Akmaljon Tojiboev ◽  
Kambarali Turgunov ◽  
...  

The asymmetric unit of the title compound, C16H13N3OS, comprises two molecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the molecule, as expressed by the Cthioamide—Nthioamide—Cphenyl—Cphenyl torsion angle of 49.3 (3)° for molecule A and of 5.4 (3)° for molecule B. In the crystal, two intermolecular N—H...N hydrogen bonds lead to the formation of a dimer with R 2 2(10) graph-set notation. A Hirshfeld surface analysis revealed that H...H interactions are the most important intermolecular interactions, contributing 40.9% to the Hirshfeld surface.


2014 ◽  
Vol 70 (9) ◽  
pp. o909-o910 ◽  
Author(s):  
Marcos Flores-Alamo ◽  
Ruth Meléndrez-Luévano ◽  
José A. Ortiz Márquez ◽  
Estibaliz Sansinenea Royano ◽  
Blanca M. Cabrera-Vivas

The title compound, C19H15N3O2, shows anEconformation of the imine bond. The dihedral angle between the planes of the phenyl rings in the diphenylhydrazine groups is 88.52 (4)°. The 2-nitrobenzene ring shows a torsion angle of 10.17 (8)° with the C=N—N plane. A short intramolecular C—H...O contact occurs. In the crystal, only van der Waals contacts occur between the molecules.


2017 ◽  
Vol 73 (11) ◽  
pp. 1716-1720 ◽  
Author(s):  
Julio Zukerman-Schpector ◽  
Sofia Dallasta Pedroso ◽  
Lucas Sousa Madureira ◽  
Márcio Weber Paixão ◽  
Akbar Ali ◽  
...  

The molecule in the title compound, C15H12N4O2, has a twistedL-shape with the dihedral angle between the aromatic rings of the N-bound benzene and C-bound benzyl groups being 70.60 (9)°. The nitro group is co-planar with the benzene ring to which it is connected [C—C—N—O torsion angle = 0.4 (3)°]. The three-dimensional packing is stabilized by a combination of methylene-C—H...O(nitro), methylene-C—H...π(phenyl), phenyl-C—H...π(triazolyl) and nitro-O...π(nitrobenzene) interactions, along with weak π(triazolyl)–π(nitrobenzene) contacts [inter-centroid distance = 3.8386 (10) Å]. The importance of the specified intermolecular contacts has been verified by an analysis of the calculated Hirshfeld surface.


Sign in / Sign up

Export Citation Format

Share Document