Harmonic elimination of electric arc furnaces by active power filters and their stability analysis

Author(s):  
H. Ghoudjehbaklou ◽  
A. Kargar
SIMULATION ◽  
2017 ◽  
Vol 93 (6) ◽  
pp. 515-525 ◽  
Author(s):  
Mohammad Reza Asban ◽  
Jamshid Aghaei ◽  
Taher Niknam ◽  
Mohammad Amin Akbari

This paper introduces a method for reducing damages arising from voltage fluctuations, voltage flicker, imbalance in the three-phase and power factor reduction caused by electric arc furnaces. A novel equation is defined to calculate the susceptance values of the static var compensator control system, the active power functions of phase load as well as the reactive power ones that have been used to suppress the voltage fluctuation. By compensating the impulsive part of active power component in the impulsive loads, not only can we reduce voltage fluctuations, flicker effects, balance the system and increase the power factor, but also voltage stabilization can be directly controlled. By studying this method and simulating on Electro-Magnetic Transients Program (EMTP) software, we can see that, according to the allowable flicker limit, a compensation method can balance the system, increase power factor and resolve the problem of voltage fluctuations and flicker.


2020 ◽  
Vol 7 (2) ◽  
pp. G1-G11 ◽  
Author(s):  
S.G. Kiyko ◽  
E.A. Druzhinin ◽  
O.V. Prokhorov ◽  
B.V. Haidabrus

The features of improving energy efficiency at a metallurgical enterprise based on portfolio management of energy-saving projects are considered. A simulation model of energy consumption at the metallurgical enterprise, which covers the entire metal products manufacture process, has been developed. The parameters, conduct, and visualization of simulation models of the main equipment such as an electric arc furnace and a ladle furnaces are described. With this software package’s help, a comparison of the permissible values and the adjusting of the predicted consumption of active power by a metallurgical enterprise for each fixed point in time are carried out. The system calculates the operating mode regulation range of electric arc furnaces to ensure the continuity of steel casting during melting of a particular steel grade along the appropriate technological routes. The model likewise includes algorithms for transport equipment management that minimize disruptions in continuous casting machines’ operation and simulate emergencies. The analysis of the results of energy consumption processes simulation at the metallurgical enterprise is carried out. As a result of modeling, it was possible to increase the productivity of a group of electric arc furnaces and ladle furnaces and reduce the maximum consumption of active power by the metallurgical enterprise. Experimental studies of energy consumption planning methods have been carried out based on real data on the metal products manufacture and electrical energy consumption by the production units of PJSC “Electrometallurgical plant “Dniprospetsstal”. The use of the electrical energy consumption model allows in an integrated manner and responds to the dynamics of production processes to carry out further calculations of economic feasibility studies, analysis, and selection of options for the project’s implementation of an energy-saving portfolio at the metallurgical enterprise.


2018 ◽  
Vol 1 (1) ◽  
pp. 54-66
Author(s):  
Rakan Khalil Antar ◽  
Basil Mohammed Saied ◽  
Rafid Ahmed Khalil

A new control strategy for active power filters is proposed, modeled and implemented in order to improve the power quality of a line commutated converter High voltage DC link. The ability of reactive power and harmonics reductions are generally met by using passive and active power filters. In this paper, modified active power filter with a modified harmonics pulse width modulation algorithm is used to minimize the source harmonics and force the AC supply current to be in the same phase with AC voltage source at both sending and receiving sides of a line commutated converter high voltage DC link. Therefore, it is considered as power factor corrector and harmonics eliminator with random variations in the load current. The modified harmonics pulse width modulation algorithm is applicable for active power filter based on a three-phase five-level and seven-level cascaded H-bridge voltage source inverter. Simulation results show that the suggested modified multilevel active power filters improve total harmonics distortion of both voltage and current with almost unity effective power factor at both AC sides of high voltage DC link. Therefore, modified active power filter is an effective tool for power quality improvement and preferable for line commutated converter high voltage DC link at different load conditions.


Vestnik MEI ◽  
2019 ◽  
Vol 6 ◽  
pp. 83-90
Author(s):  
Anatoliy M. Kruchinin ◽  
◽  
Mikhail Ya. Pogrebisskiy ◽  
Elena S. Ryazanova ◽  
Andrey Yu. Chursin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document