Investigation of load noise generation of large power transformer by means of coupled 3D FEM analysis

Author(s):  
Michael Ertl ◽  
Hermann Landes
2020 ◽  
Vol 67 (1) ◽  
pp. 42-47
Author(s):  
Anatoliy I. Sopov ◽  
Aleksandr V. Vinogradov

In power transformers, energy losses in the form of heat are about 2 percent of their rated power, and in transformers of large power centers reach hundreds of kilowatts. Heat is dissipated into the environment and heats the street air. Therefore, there is a need to consume this thermal energy as a source of heat supply to nearby facilities. (Research purpose) To develop methods and means of using excess heat of power transformers with improvement of their cooling system design. (Materials and methods) The authors applied following methods: analysis, synthesis, comparison, monographic, mathematical and others. They analyzed various methods for consuming excess heat from power transformers. They identified suitable heat supply sources among power transformers and potential heat consumers. The authors studied the reasons for the formation of excess heat in power transformers and found ways to conserve this heat to increase the efficiency of its selection. (Results and discussion) The authors developed an improved power transformer cooling system design to combine the functions of voltage transformation and electric heating. They conducted experiments to verify the effectiveness of decisions made. A feasibility study was carried out on the implementation of the developed system using the example of the TMG-1000/10/0.4 power transformer. (Conclusions) The authors got a new way to use the excess heat of power transformers to heat the AIC facilities. It was determined that the improved design of the power transformer and its cooling system using the developed solutions made it possible to maximize the amount of heat taken off without quality loss of voltage transformation.


2012 ◽  
Vol 433-440 ◽  
pp. 7287-7292
Author(s):  
You Hua Gao ◽  
Zeng Feng Lai ◽  
Xiao Ming Liu ◽  
Guo Wei Liu ◽  
Ye Wang

To analyze the transient response of transformer windings under very fast transient over-voltage (VFTO), multi-conductor transmission line (MTL) model based on the representation of transformer windings by its individual turns are established. Space discretization is needed for solving the time-domain telegraph equations of MTL. To calculate the voltage distributions along transformer windings, through combining the compact finite difference (CFD) theory and the backward differentiation formulas (BDF). Simulation software ATP is introduced, and the simulation results demonstrate that the proposed approach is feasible.


Scoliosis ◽  
2015 ◽  
Vol 10 (S1) ◽  
Author(s):  
Yuichiro Abe ◽  
Manabu Ito ◽  
Kuniyoshi Abumi ◽  
Remel Salmingo ◽  
Shigeru Tadano ◽  
...  
Keyword(s):  

Author(s):  
Mahfoud Chafai ◽  
Larbi Refoufi ◽  
Hamid Bentarzi

Sign in / Sign up

Export Citation Format

Share Document