Solid rocket motor design using a surrogate model

2018 ◽  
Vol 90 (7) ◽  
pp. 1104-1127
Author(s):  
Ceyhun Tola ◽  
Melike Nikbay

Purpose This study aims to determine the relationship between sectional geometric parameters of a slotted solid rocket propellant on structural integrity and internal ballistic performance of a rocket motor by using response surface method. Design/methodology/approach Zero-dimensional (0D) ballistic solver is developed and validated to determine the effects of sectional geometric parameters on internal ballistic performance of a rocket motor. Additionally, effects of these parameters on structural strength of the system are examined by performing linear viscoelastic finite element analysis under plane strain assumption. Results of the 0D internal ballistic analyses are used as an input to the structural analysis. Findings Different response surfaces are constructed to represent the characteristic variation of solid propellant’s structural strength and internal ballistic performance with respect to design variables. Originality/value Coupled analysis methodology in terms of structural strength and internal ballistic performance presented in this work facilitates many designers who are working on solid rocket motor development. This study represents graphical results summarizing effects of sectional parameters of a slotted grain on both internal ballistic performance and structural strength results. Additionally, graphical results summarizing the effects of sectional parameters on structural strength and internal ballistic performance provide useful information for researchers that lessens design period. Finally, validations presented in this work can also be used as a benchmark reference for different studies.

2015 ◽  
Vol 798 ◽  
pp. 576-581
Author(s):  
Hao Xu ◽  
Fu Ting Bao ◽  
Chen Cheng ◽  
Bin Hang Wang

In the assessment of internal ballistic performance reliability of Solid Rocket Motor (SRM), eigenvalue discriminance method has long been used. In order to avoid the limitations of the traditional methods, a curve similarity discriminance modification combined with Hausdorff Distance was introduced. A Monte-Carlo simulation model of internal ballistic performance was established, and several uncertain parameters were chosen. A sample analysis of performance reliability of a designed SRM was presented. The result was credible, which proved the modification is feasible and it can meet the needs of the assessment of the internal ballistic performance reliability.


2019 ◽  
Vol 37 (2) ◽  
pp. 522-545
Author(s):  
Yangtian Li ◽  
Haibin Li ◽  
Guangmei Wei

Purpose To present the models with many model parameters by polynomial chaos expansion (PCE), and improve the accuracy, this paper aims to present dimension-adaptive algorithm-based PCE technique and verify the feasibility of the proposed method through taking solid rocket motor ignition under low temperature as an example. Design/methodology/approach The main approaches of this work are as follows: presenting a two-step dimension-adaptive algorithm; through computing the PCE coefficients using dimension-adaptive algorithm, improving the accuracy of PCE surrogate model obtained; and applying the proposed method to uncertainty quantification (UQ) of solid rocket motor ignition under low temperature to verify the feasibility of the proposed method. Findings The result indicates that by means of comparing with some conventional non-invasive method, the proposed method is able to raise the computational accuracy significantly on condition of meeting the efficiency requirement. Originality/value This paper proposes an approach in which the optimal non-uniform grid that can avoid the issue of overfitting or underfitting is obtained.


2011 ◽  
Vol 63-64 ◽  
pp. 621-626
Author(s):  
Zai Cheng Wang ◽  
Chun Lan Jiang ◽  
Ming Li

Although the rocket propulsion technologies have been used for several decades, the traditional motor can not meet the special rotating requirement. A kind of spinning solid rocket motor (SSRM) which used as power device of some kinds of dispenser was introduced. This kind of motor has the structure characterization for tangential nozzles. Its design scheme and prediction of interior ballistic performance were discussed. And the main factors should to be considered in design were analyzed comprehensively. In order to research working performance of the SSRM static test was carried out. The calculation and test results indicate that the design can satisfy general requirement of its application normally.


2021 ◽  
Author(s):  
Sonny Loncaric

A numerical model is developed to solve the governing equations for the structural dynamics and internal ballistics of a solid rocket motor (SRM). An explicit finite element method is used to solve for the structural response, and an explicit finite volume method is used to solve for the internal ballistic flow. Together, these two numerical solutions are coupled to model the nonsteady behaviour of axial combustion instability in sleeved cylindrical- and star-grain SRMs. The simulation model is used to predict the axial instability in star-grain SRMs. A parametric analysis is made to record the effects of various parameters on the simulation model. These parameters include the numerical dissipation constant, damping ratio and pulsing strength. It is found that both the numerical dissipation constant and damping ratio can, both artificially and physically, affect the finite element structural response of the motor. The pulsing strength affects only the rate at which the do pressure rises as well as how quickly the limiting wave amplitude is reached. A numerical model is developed to solve the governing equations for the structural dynamics and internal ballistics of a solid rocket motor (SRM). An explicit finite element method is used to solve for the structural response, and an explicit finite volume method is used to solve for the internal ballistic flow. Together, these two numerical solutions are coupled to model the nonsteady behaviour of axial combustion instability in sleeved cylindrical- and star-grain SRMs.The simulation model is used to predict the axial instability in star-grain SRMs. A parametric analysis is made to record the effects of various parameters on the simulation model. These parameters include the numerical dissipation constant, damping ratio and pulsing strength. It is found that both the numerical dissipation constant and damping ratio can, both artificially and physically, affect the finite element structural response of the motor. The pulsing strength affects only the rate at which the do pressure rises as well as how quickly the limiting wave amplitude is reached.The detailed analysis of simulated star-grain SRM axial instability reveals the effect of structural vibrations on burning rate augmentation and wave development in nonsteady operation. The variation in oscillation frequencies about a given grain section periphery, and along the grain with different levels of burnback, influences the means by which the local acceleration drives the combustion and flow behavior. The amount of damping also plays a role in influencing the predicted instability symptoms of the motor.


2021 ◽  
Author(s):  
Sonny Loncaric

A numerical model is developed to solve the governing equations for the structural dynamics and internal ballistics of a solid rocket motor (SRM). An explicit finite element method is used to solve for the structural response, and an explicit finite volume method is used to solve for the internal ballistic flow. Together, these two numerical solutions are coupled to model the nonsteady behaviour of axial combustion instability in sleeved cylindrical- and star-grain SRMs. The simulation model is used to predict the axial instability in star-grain SRMs. A parametric analysis is made to record the effects of various parameters on the simulation model. These parameters include the numerical dissipation constant, damping ratio and pulsing strength. It is found that both the numerical dissipation constant and damping ratio can, both artificially and physically, affect the finite element structural response of the motor. The pulsing strength affects only the rate at which the do pressure rises as well as how quickly the limiting wave amplitude is reached. A numerical model is developed to solve the governing equations for the structural dynamics and internal ballistics of a solid rocket motor (SRM). An explicit finite element method is used to solve for the structural response, and an explicit finite volume method is used to solve for the internal ballistic flow. Together, these two numerical solutions are coupled to model the nonsteady behaviour of axial combustion instability in sleeved cylindrical- and star-grain SRMs.The simulation model is used to predict the axial instability in star-grain SRMs. A parametric analysis is made to record the effects of various parameters on the simulation model. These parameters include the numerical dissipation constant, damping ratio and pulsing strength. It is found that both the numerical dissipation constant and damping ratio can, both artificially and physically, affect the finite element structural response of the motor. The pulsing strength affects only the rate at which the do pressure rises as well as how quickly the limiting wave amplitude is reached.The detailed analysis of simulated star-grain SRM axial instability reveals the effect of structural vibrations on burning rate augmentation and wave development in nonsteady operation. The variation in oscillation frequencies about a given grain section periphery, and along the grain with different levels of burnback, influences the means by which the local acceleration drives the combustion and flow behavior. The amount of damping also plays a role in influencing the predicted instability symptoms of the motor.


2021 ◽  
Author(s):  
David Greatrix

The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave development in the motor chamber flow. With the focus of the present study placed on reactive particles, a numerical internal ballistic model incorporating relevant elements, such as a transient, frequency-dependent combustion response to axial pressure wave activity above the burning propellant surface, is applied to the investigation of using aluminum particles within the central internal flow (particles whose surfaces nominally regress with time, as a function of current particle size, as they move downstream) as a means of suppressing instability-related symptoms in a cylindrical-grain motor. The results of this investigation reveal that the loading percentage and starting size of the aluminum particles have a significant influence on reducing the resulting transient pressure wave magnitude.


2021 ◽  
Author(s):  
David Greatrix

The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave development in the motor chamber flow. With the focus of the present study placed on reactive particles, a numerical internal ballistic model incorporating relevant elements, such as a transient, frequency-dependent combustion response to axial pressure wave activity above the burning propellant surface, is applied to the investigation of using aluminum particles within the central internal flow (particles whose surfaces nominally regress with time, as a function of current particle size, as they move downstream) as a means of suppressing instability-related symptoms in a cylindrical-grain motor. The results of this investigation reveal that the loading percentage and starting size of the aluminum particles have a significant influence on reducing the resulting transient pressure wave magnitude.


Sign in / Sign up

Export Citation Format

Share Document