A FRACTIONAL STEP FINITE ELEMENT METHOD FOR CONDUCTIVE‐CONVECTIVE HEAT TRANSFER PROBLEMS

1991 ◽  
Vol 1 (1) ◽  
pp. 77-94 ◽  
Author(s):  
KATSUMORI HATANAKA ◽  
MUTSUTO KAWAHARA
Author(s):  
Degavath Gopal ◽  
Hina Firdous ◽  
Salman Saleem ◽  
Naikoti Kishan

This paper represents steady two-dimensional boundary layer flow of micropolar fluid flow with impact of convective heat transfer and buoyancy force investigated numerically. The shrinking velocity has been expected to fluctuate linearly with the existence of a fixed point on the sheet. With the assistance of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations; these nonlinear ODEs are solved numerically by using the variational finite element method. The current numerical results are obtained from the variational finite element method and compared with the previously published literature work, with which it exists in good agreement. The impact of the flow monitoring parameters on velocity, microrotation and temperature profiles is examined graphically and discussed. The skin friction coefficient and Nusselt numbers are impacts from adjusting various values of the physical parameters and relevant features which are studied.


2005 ◽  
Vol 21 (5) ◽  
pp. 436-443 ◽  
Author(s):  
Niphon Wansophark ◽  
Atipong Malatip ◽  
Pramote Dechaumphai

2003 ◽  
Vol 9 (3) ◽  
pp. 153-162 ◽  
Author(s):  
Irena Gabrielaitienė ◽  
Rimantas Kačianauskas ◽  
Bengt Sunden

The modelling of uncoupled fluid flow and heat transfer problems of a district heating network using the finite element method (FEM) is presented. Since the standard thermo-hydraulic pipe elements cannot be directly used for modelling insulation, the main attention was paid to discretisation of multilayered structure of pipes and surrounding by one-dimensional thermal elements. In addition, validity of the finite element method was verified numerically by solving fluid flow and heat transfer problems in district heating pipelines. Verification analysis involves standard single pipe problems and simulation of fragment of district heating in Vilnius. Pressure and temperature results obtained by finite element method are compared with those by other approaches.


Sign in / Sign up

Export Citation Format

Share Document