Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation

2019 ◽  
Vol 37 (2) ◽  
pp. 753-788
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup. Design/methodology/approach Formulation of the multi-objective design problem-oriented toward execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploits variable fidelity modeling, physics- and approximation-based representation of the structure and model correction techniques. The considered approach is suitable for handling various problems pertinent to the design of microwave and antenna structures. Numerical case studies are provided demonstrating the feasibility of the segmentation-based framework for the design of real-world structures in setups with two and three objectives. Findings Formulation of appropriate design problem enables identification of the search space region containing Pareto front, which can be further divided into a set of compartments characterized by small combined volume. Approximation model of each segment can be constructed using a small number of training samples and then optimized, at a negligible computational cost, using population-based metaheuristics. Introduction of segmentation mechanism to multi-objective design framework is important to facilitate low-cost optimization of many-parameter structures represented by numerically expensive computational models. Further reduction of the design cost can be achieved by enforcing equal-volumes of the search space segments. Research limitations/implications The study summarizes recent advances in low-cost multi-objective design of microwave and antenna structures. The investigated techniques exceed capabilities of conventional design approaches involving direct evaluation of physics-based models for determination of trade-offs between the design objectives, particularly in terms of reliability and reduction of the computational cost. Studies on the scalability of segmentation mechanism indicate that computational benefits of the approach decrease with the number of search space segments. Originality/value The proposed design framework proved useful for the rapid multi-objective design of microwave and antenna structures characterized by complex and multi-parameter topologies, which is extremely challenging when using conventional methods driven by population-based metaheuristics algorithms. To the authors knowledge, this is the first work that summarizes segmentation-based approaches to multi-objective optimization of microwave and antenna components.

2016 ◽  
Vol 33 (4) ◽  
pp. 1095-1113 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose – The purpose of this paper is to investigate strategies for expedited dimension scaling of electromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling. Design/methodology/approach – A fast inverse surrogate modeling technique is described for dimension scaling of microwave and antenna structures. The model is established using reference designs obtained for cheap underlying low-fidelity model and corrected to allow structure scaling at high accuracy level. Numerical and experimental case studies are provided demonstrating feasibility of the proposed approach. Findings – It is possible, by appropriate combination of surrogate modeling techniques, to establish an inverse model for explicit determination of geometry dimensions of the structure at hand so as to re-design it for various operating frequencies. The scaling process can be concluded at a low computational cost corresponding to just a few evaluations of the high-fidelity computational model of the structure. Research limitations/implications – The present study is a step toward development of procedures for rapid dimension scaling of microwave and antenna structures at high-fidelity EM-simulation accuracy. Originality/value – The proposed modeling framework proved useful for fast geometry scaling of microwave and antenna structures, which is very laborious when using conventional methods. To the authors’ knowledge, this is one of the first attempts to surrogate-assisted dimension scaling of microwave components at the EM-simulation level.


2016 ◽  
Vol 33 (7) ◽  
pp. 2007-2018 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as EM simulation models with various levels of fidelity (coarse, medium and fine). Adaptive procedure for switching between the models of increasing accuracy in the course of the optimization process is implemented. Numerical and experimental case studies are provided to validate correctness of the design approach. Findings Appropriate combination of suitable design optimization algorithm embedded in a trust region framework, as well as model selection techniques, allows for considerable reduction of the antenna optimization cost compared to conventional methods. Research limitations/implications The study demonstrates feasibility of EM-simulation-driven design optimization of antennas at low computational cost. The presented techniques reach beyond the common design approaches based on direct optimization of EM models using conventional gradient-based or derivative-free methods, particularly in terms of reliability and reduction of the computational costs of the design processes. Originality/value Simulation-driven design optimization of contemporary antenna structures is very challenging when high-fidelity EM simulations are utilized for performance utilization of structure at hand. The proposed variable-fidelity optimization technique with adjoint sensitivity and trust regions permits rapid optimization of numerically demanding antenna designs (here, dielectric resonator antenna and compact monopole), which cannot be achieved when conventional methods are of use. The design cost of proposed strategy is up to 60 percent lower than direct optimization exploiting adjoint sensitivities. Experimental validation of the results is also provided.


2018 ◽  
Vol 35 (7) ◽  
pp. 2514-2542
Author(s):  
Andrew Thelen ◽  
Leifur Leifsson ◽  
Anupam Sharma ◽  
Slawomir Koziel

Purpose Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are complex, evaluating a DRWT design requires accurate predictive simulations, which incur high computational costs. Currently, there does not exist a design optimization framework for DRWTs. Since the design optimization of DRWTs requires numerous model evaluations, the purpose of this paper is to identify computationally efficient design approaches. Design/methodology/approach Several algorithms are compared for the design optimization of DRWTs. The algorithms vary widely in approaches and include a direct derivative-free method, as well as three surrogate-based optimization methods, two approximation-based approaches and one variable-fidelity approach with coarse discretization low-fidelity models. Findings The proposed variable-fidelity method required significantly lower computational cost than the derivative-free and approximation-based methods. Large computational savings come from using the time-consuming high-fidelity simulations sparingly and performing the majority of the design space search using the fast variable-fidelity models. Originality/value Due the complex simulations and the large number of designable parameters, the design of DRWTs require the use of numerical optimization algorithms. This work presents a novel and efficient design optimization framework for DRWTs using computationally intensive simulations and variable-fidelity optimization techniques.


2016 ◽  
Vol 33 (8) ◽  
pp. 2320-2338 ◽  
Author(s):  
Slawomir Koziel ◽  
Yonatan Tesfahunegn ◽  
Leifur Leifsson

Purpose Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach An algorithmic framework is described that is composed of: a search space reduction, fast surrogate models constructed using variable-fidelity CFD models and co-Kriging, and Pareto front refinement. Numerical case studies are provided demonstrating the feasibility of solving real-world problems involving multi-objective optimization of transonic airfoil shapes and accurate CFD simulation models of such surfaces. Findings It is possible, through appropriate combination of surrogate modeling techniques and variable-fidelity models, to identify a set of alternative designs representing the best possible trade-offs between conflicting design objectives in a realistic time frame corresponding to a few dozen of high-fidelity CFD simulations of the respective surfaces. Originality/value The proposed aerodynamic design optimization algorithmic framework is novel and holistic. It proved useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search space, which is extremely challenging when using conventional methods due to the excessive computational cost.


2017 ◽  
Vol 34 (2) ◽  
pp. 403-419 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering the design cost and improve reliability. Design/methodology/approach There are two algorithmic frameworks presented, both fully deterministic. The first algorithm involves creating a path covering the Pareto front and arranged as a sequence of patches relocated in the course of optimization. Response correction techniques are used to find the Pareto front representation at the high-fidelity EM simulation level. The second algorithm exploits Pareto front exploration where subsequent Pareto-optimal designs are obtained by moving along the front by means of solving appropriately defined local constrained optimization problems. Numerical case studies are provided demonstrating feasibility of solving real-world problems involving expensive EM-simulation models of impedance transformer structures. Findings It is possible, by means of combining surrogate modeling techniques and constrained local optimization, to identify the set of alternative designs representing Pareto-optimal solutions, in a realistic time frame corresponding to a few dozen of high-fidelity EM simulations of the respective structures. Multi-objective optimization for the considered class of structures can be realized using deterministic approaches without defaulting to evolutionary methods. Research limitations/implications The present study can be considered a step toward further studies on expedited optimization of computationally expensive simulation models for miniaturized microwave components. Originality/value The proposed algorithmic solutions proved useful for expedited multi-objective design optimization of miniaturized microwave structures. The problem is extremely challenging when using conventional methods, in particular evolutionary algorithms. To the authors’ knowledge, this is one of the first attempts to investigate deterministic surrogate-assisted multi-objective optimization of compact components at the EM-simulation level.


2019 ◽  
Vol 37 (3) ◽  
pp. 851-862 ◽  
Author(s):  
Slawomir Koziel ◽  
Anna Pietrenko-Dabrowska

Purpose A technique for accelerated design optimization of antenna input characteristics is developed and comprehensively validated using real-world wideband antenna structures. Comparative study using a conventional trust-region algorithm is provided. Investigations of the effects of the algorithm control parameters are also carried out. Design/methodology/approach An optimization methodology is introduced that replaces finite differentiation (FD) by a combination of FD and selectively used Broyden updating formula for antenna response Jacobian estimations. The updating formula is used for directions that are sufficiently well aligned with the design relocation that occurred in the most recent algorithm iteration. This allows for a significant reduction of the number of full-wave electromagnetic simulations necessary for the algorithm to converge; hence, it leads to the reduction of the overall design cost. Findings Incorporation of the updating formulas into the Jacobian estimation process in a selective manner considerably reduces the computational cost of the optimization process without compromising the design quality. The algorithm proposed in the study can be used to speed up direct optimization of the antenna structures as well as surrogate-assisted procedures involving variable-fidelity models. Research limitations/implications This study sets a direction for further studies on accelerating procedures for the local optimization of antenna structures. Further investigations on the effects of the control parameters on the algorithm performance are necessary along with the development of means to automate the algorithm setup for a particular antenna structure, especially from the point of view of the search space dimensionality. Originality/value The proposed algorithm proved useful for a reduced-cost optimization of antennas and has been demonstrated to outperform conventional algorithms. To the authors’ knowledge, this is one of the first attempts to address the problem in this manner. In particular, it goes beyond traditional approaches, especially by combining various sensitivity estimation update measures in an adaptive fashion.


2019 ◽  
Vol 36 (9) ◽  
pp. 2983-2995
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose This paper aims to investigate the strategy for low-cost yield optimization of miniaturized microstrip couplers using variable-fidelity electromagnetic (EM) simulations. Design/methodology/approach Usefulness of data-driven models constructed from structure frequency responses formulated in the form of suitably defined characteristic points for statistical analysis is investigated. Reformulation of the characteristics leads to a less nonlinear functional landscape and reduces the number of training samples required for accurate modeling. Further reduction of the cost associated with construction of the data-driven model, is achieved using variable-fidelity methods. Numerical case study is provided demonstrating feasibility of the feature-based modeling for low cost statistical analysis and yield optimization. Findings It is possible, through reformulation of the structure frequency responses in the form of suitably defined feature points, to reduce the number of training samples required for its data-driven modeling. The approximation model can be used as an accurate evaluation engine for a low-cost Monte Carlo analysis. Yield optimization can be realized through minimization of yield within the data-driven model bounds and subsequent model re-set around the optimized design. Research limitations/implications The investigated technique exceeds capabilities of conventional Monte Carlo-based approaches for statistical analysis in terms of computational cost without compromising its accuracy with respect to the conventional EM-based Monte Carlo. Originality/value The proposed tolerance-aware design approach proved useful for rapid yield optimization of compact microstrip couplers represented using EM-simulation models, which is extremely challenging when using conventional approaches due to tremendous number of EM evaluations required for statistical analysis.


2016 ◽  
Vol 33 (4) ◽  
pp. 1246-1258 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose – The purpose of this paper is to validate methodologies for expedited multi-objective design optimization of complex antenna structures both numerically and experimentally. Design/methodology/approach – The task of identifying the best possible trade-offs between the antenna size and its electrical performance is formulated as multi-objective optimization problem. Algorithmic frameworks are described for finding Pareto-optimal designs using auxiliary surrogate models and two alternative approaches to design refinement: response correction techniques and co-kriging. Numerical and experimental case studies are provided to demonstrate feasibility of solving real-world and complex antenna design tasks. Findings – It is possible, through appropriate combination of the surrogate modeling techniques (both data driven and physics based) and response correction methods, to find the set of alternative designs representing the best possible trade-offs between conflicting design objectives, here, electrical performance and size. Design optimization can be performed at practically feasible computational costs. Research limitations/implications – The study demonstrates feasibility of automated multi-objective design optimization of antennas at low computational cost. The presented techniques reach beyond the commonly used design approaches based on parameter sweeps and similar hands-on methods, particularly in terms of automation, reliability and reduction of the computational costs of the design processes. Originality/value – Multi-objective design of antenna structures is very challenging when high-fidelity electromagnetic simulations are utilized for performance evaluation of the structure at hand. The proposed design framework permits rapid optimization of complex structures (here, MIMO antenna), which is hardly possible using conventional methods.


Author(s):  
Janga Reddy Manne

Most of the engineering design problems are intrinsically complex and difficult to solve, because of diverse solution search space, complex functions, continuous and discrete nature of decision variables, multiple objectives and hard constraints. Swarm intelligence (SI) algorithms are becoming popular in dealing with these kind of complexities. The SI algorithms being population based random search techniques, use heuristics inspired from nature to enable effective exploration of optimal solutions to complex engineering problems. The SI algorithms derived based on principles of co-operative group intelligence and collective behavior of self-organized systems. This chapter presents key principles of multi-optimization, and swarm optimization for solving multi-objective engineering design problems with illustration through few examples.


2020 ◽  
Vol 54 (3) ◽  
pp. 275-296 ◽  
Author(s):  
Najmeh Sadat Jaddi ◽  
Salwani Abdullah

PurposeMetaheuristic algorithms are classified into two categories namely: single-solution and population-based algorithms. Single-solution algorithms perform local search process by employing a single candidate solution trying to improve this solution in its neighborhood. In contrast, population-based algorithms guide the search process by maintaining multiple solutions located in different points of search space. However, the main drawback of single-solution algorithms is that the global optimum may not reach and it may get stuck in local optimum. On the other hand, population-based algorithms with several starting points that maintain the diversity of the solutions globally in the search space and results are of better exploration during the search process. In this paper more chance of finding global optimum is provided for single-solution-based algorithms by searching different regions of the search space.Design/methodology/approachIn this method, different starting points in initial step, searching locally in neighborhood of each solution, construct a global search in search space for the single-solution algorithm.FindingsThe proposed method was tested based on three single-solution algorithms involving hill-climbing (HC), simulated annealing (SA) and tabu search (TS) algorithms when they were applied on 25 benchmark test functions. The results of the basic version of these algorithms were then compared with the same algorithms integrated with the global search proposed in this paper. The statistical analysis of the results proves outperforming of the proposed method. Finally, 18 benchmark feature selection problems were used to test the algorithms and were compared with recent methods proposed in the literature.Originality/valueIn this paper more chance of finding global optimum is provided for single-solution-based algorithms by searching different regions of the search space.


Sign in / Sign up

Export Citation Format

Share Document