Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization

2016 ◽  
Vol 33 (8) ◽  
pp. 2320-2338 ◽  
Author(s):  
Slawomir Koziel ◽  
Yonatan Tesfahunegn ◽  
Leifur Leifsson

Purpose Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach An algorithmic framework is described that is composed of: a search space reduction, fast surrogate models constructed using variable-fidelity CFD models and co-Kriging, and Pareto front refinement. Numerical case studies are provided demonstrating the feasibility of solving real-world problems involving multi-objective optimization of transonic airfoil shapes and accurate CFD simulation models of such surfaces. Findings It is possible, through appropriate combination of surrogate modeling techniques and variable-fidelity models, to identify a set of alternative designs representing the best possible trade-offs between conflicting design objectives in a realistic time frame corresponding to a few dozen of high-fidelity CFD simulations of the respective surfaces. Originality/value The proposed aerodynamic design optimization algorithmic framework is novel and holistic. It proved useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search space, which is extremely challenging when using conventional methods due to the excessive computational cost.

2019 ◽  
Vol 37 (2) ◽  
pp. 753-788
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup. Design/methodology/approach Formulation of the multi-objective design problem-oriented toward execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploits variable fidelity modeling, physics- and approximation-based representation of the structure and model correction techniques. The considered approach is suitable for handling various problems pertinent to the design of microwave and antenna structures. Numerical case studies are provided demonstrating the feasibility of the segmentation-based framework for the design of real-world structures in setups with two and three objectives. Findings Formulation of appropriate design problem enables identification of the search space region containing Pareto front, which can be further divided into a set of compartments characterized by small combined volume. Approximation model of each segment can be constructed using a small number of training samples and then optimized, at a negligible computational cost, using population-based metaheuristics. Introduction of segmentation mechanism to multi-objective design framework is important to facilitate low-cost optimization of many-parameter structures represented by numerically expensive computational models. Further reduction of the design cost can be achieved by enforcing equal-volumes of the search space segments. Research limitations/implications The study summarizes recent advances in low-cost multi-objective design of microwave and antenna structures. The investigated techniques exceed capabilities of conventional design approaches involving direct evaluation of physics-based models for determination of trade-offs between the design objectives, particularly in terms of reliability and reduction of the computational cost. Studies on the scalability of segmentation mechanism indicate that computational benefits of the approach decrease with the number of search space segments. Originality/value The proposed design framework proved useful for the rapid multi-objective design of microwave and antenna structures characterized by complex and multi-parameter topologies, which is extremely challenging when using conventional methods driven by population-based metaheuristics algorithms. To the authors knowledge, this is the first work that summarizes segmentation-based approaches to multi-objective optimization of microwave and antenna components.


2017 ◽  
Vol 34 (2) ◽  
pp. 403-419 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering the design cost and improve reliability. Design/methodology/approach There are two algorithmic frameworks presented, both fully deterministic. The first algorithm involves creating a path covering the Pareto front and arranged as a sequence of patches relocated in the course of optimization. Response correction techniques are used to find the Pareto front representation at the high-fidelity EM simulation level. The second algorithm exploits Pareto front exploration where subsequent Pareto-optimal designs are obtained by moving along the front by means of solving appropriately defined local constrained optimization problems. Numerical case studies are provided demonstrating feasibility of solving real-world problems involving expensive EM-simulation models of impedance transformer structures. Findings It is possible, by means of combining surrogate modeling techniques and constrained local optimization, to identify the set of alternative designs representing Pareto-optimal solutions, in a realistic time frame corresponding to a few dozen of high-fidelity EM simulations of the respective structures. Multi-objective optimization for the considered class of structures can be realized using deterministic approaches without defaulting to evolutionary methods. Research limitations/implications The present study can be considered a step toward further studies on expedited optimization of computationally expensive simulation models for miniaturized microwave components. Originality/value The proposed algorithmic solutions proved useful for expedited multi-objective design optimization of miniaturized microwave structures. The problem is extremely challenging when using conventional methods, in particular evolutionary algorithms. To the authors’ knowledge, this is one of the first attempts to investigate deterministic surrogate-assisted multi-objective optimization of compact components at the EM-simulation level.


2016 ◽  
Vol 33 (1) ◽  
pp. 184-201 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose – Strategies for accelerated multi-objective optimization of compact microwave and RF structures are investigated, including the possibility of exploiting surrogate modeling techniques for electromagnetic (EM)-driven design speedup for such components. The paper aims to discuss these issues. Design/methodology/approach – Two algorithmic frameworks are described that are based on fast response surface approximation models, structure decomposition, and Pareto front refinement. Numerical case studies are provided demonstrating feasibility of solving real-world problems involving multi-objective optimization of miniaturized microwave passives and expensive EM-simulation models of such structures. Findings – It is possible, through appropriate combination of the surrogate modeling techniques and response correction methods, to identify the set of alternative designs representing the best possible trade-offs between conflicting design objectives in a realistic time frame corresponding to a few dozen of high-fidelity EM simulations of the respective structures. Research limitations/implications – The present study sets a direction for further studied on expedited optimization of computationally expensive simulation models for miniaturized microwave components. Originality/value – The proposed algorithmic framework proved useful for fast design of microwave structures, which is extremely challenging when using conventional methods. To the authors’ knowledge, this is one of the first attempts to surrogate-assisted multi-objective optimization of compact components at the EM-simulation level.


2019 ◽  
Vol 37 (2) ◽  
pp. 430-457 ◽  
Author(s):  
Anand Amrit ◽  
Leifur Leifsson

Purpose The purpose of this work is to apply and compare surrogate-assisted and multi-fidelity, multi-objective optimization (MOO) algorithms to simulation-based aerodynamic design exploration. Design/methodology/approach The three algorithms for multi-objective aerodynamic optimization compared in this work are the combination of evolutionary algorithms, design space reduction and surrogate models, the multi-fidelity point-by-point Pareto set identification and the multi-fidelity sequential domain patching (SDP) Pareto set identification. The algorithms are applied to three cases, namely, an analytical test case, the design of transonic airfoil shapes and the design of subsonic wing shapes, and are evaluated based on the resulting best possible trade-offs and the computational overhead. Findings The results show that all three algorithms yield comparable best possible trade-offs for all the test cases. For the aerodynamic test cases, the multi-fidelity Pareto set identification algorithms outperform the surrogate-assisted evolutionary algorithm by up to 50 per cent in terms of cost. Furthermore, the point-by-point algorithm is around 27 per cent more efficient than the SDP algorithm. Originality/value The novelty of this work includes the first applications of the SDP algorithm to multi-fidelity aerodynamic design exploration, the first comparison of these multi-fidelity MOO algorithms and new results of a complex simulation-based multi-objective aerodynamic design of subsonic wing shapes involving two conflicting criteria, several nonlinear constraints and over ten design variables.


2019 ◽  
Vol 37 (4) ◽  
pp. 1491-1512 ◽  
Author(s):  
Slawomir Koziel ◽  
Anna Pietrenko-Dabrowska

Purpose This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is demonstrated through a two-objective optimization of a planar Yagi antenna and three-objective design of a compact wideband antenna. Design/methodology/approach The keystone of the proposed approach is the usage of recently introduced nested kriging modeling for identifying the design space region containing the Pareto front and constructing fast surrogate model for the MO algorithm. Surrogate-assisted design refinement is applied to improve the accuracy of Pareto set determination. Consequently, the Pareto set is obtained cost-efficiently, even though the optimization process uses solely high-fidelity electromagnetic (EM) analysis. Findings The optimization cost is dramatically reduced for the proposed framework as compared to other state-of-the-art frameworks. The initial Pareto set is identified more precisely (its span is wider and of better quality), which is a result of a considerably smaller domain of the nested kriging model and better predictive power of the surrogate. Research limitations/implications The proposed technique can be generalized to accommodate low- and high-fidelity EM simulations in a straightforward manner. The future work will incorporate variable-fidelity simulations to further reduce the cost of the training data acquisition. Originality/value The fast MO optimization procedure with the use of the nested kriging modeling technology for approximation of the Pareto set has been proposed and its superiority over state-of-the-art surrogate-assisted procedures has been proved. To the best of the authors’ knowledge, this approach to multi-objective antenna optimization is novel and enables obtaining optimal designs cost-effectively even in relatively high-dimensional spaces (considering typical antenna design setups) within wide parameter ranges.


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


Author(s):  
M Vasile ◽  
F Zuiani

This article presents an algorithm for multi-objective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighbourhood of each agent. These heuristics are complemented with a combination of a local and global archive. The novel agent-based algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. Its performance is compared against a number of state-of-the-art multi-objective optimization algorithms that use the Pareto dominance as selection criterion: non-dominated sorting genetic algorithm (NSGA-II), Pareto archived evolution strategy (PAES), multiple objective particle swarm optimization (MOPSO), and multiple trajectory search (MTS). The results demonstrate that the agent-based search can identify parts of the Pareto set that the other algorithms were not able to capture. Furthermore, convergence is statistically better although the variance of the results is in some cases higher.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Mahdi Ershadi ◽  
Hossein Shams Shemirani

PurposeProper planning for the response phase of humanitarian relief can significantly prevent many financial and human losses. To this aim, a multi-objective optimization model is proposed in this paper that considers different types of injured people, different vehicles with determining capacities and multi-period logistic planning. This model can be updated based on new information about resources and newly identified injured people.Design/methodology/approachThe main objective function of the proposed model in this paper is minimizing the unsatisfied prioritized injured people in the network. Besides, the total transportation activities of different types of vehicles are considered as another objective function. Therefore, these objectives are optimized hierarchically in the proposed model using the Lexicographic method. This method finds the best value for the first objective function. Then, it tries to optimize transportation activities as the second objective function while maintaining the optimality of the first objective function.FindingsThe performances of the proposed model were analyzed in different cases and its robust approach for different problems was shown within the framework of a case study. Besides, the sensitivity analysis of results shows the logical behavior of the proposed model against various factors.Practical implicationsThe proposed methodology can be applied to find the best response plan for all crises.Originality/valueIn this paper, we have tried to use a multi-objective optimization model to guide and correct response programs to deal with the occurred crisis. This is important because it can help emergency managers to improve their plans.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianzhong Cui ◽  
Hu Li ◽  
Dong Zhang ◽  
Yawen Xu ◽  
Fangwei Xie

Purpose The purpose of this study is to investigate the flexible dynamic characteristics about hydro-viscous drive providing meaningful insights into the credible speed-regulating behavior during the soft-start. Design/methodology/approach A comprehensive dynamic transmission model is proposed to investigate the effects of key parameters on the dynamic characteristics. To achieve a trade-off between the transmission efficiency and time proportion of hydrodynamic and mixed lubrication, a multi-objective optimization of friction pair system by genetic algorithm is presented to obtain the optimal combination of design parameters. Findings Decreasing the engagement pressure or the ratio of inner and outer radius, increasing the lubricating oil viscosity or the outer radius will result in the increase of time proportion of hydrodynamic and mixed lubrication, as well as the transmission efficiency and its maximum value. After optimization, main dynamic parameters including the oil film thickness, angular velocity of the driven disk, viscous torque and total torque show remarkable flexible transmission characteristics. Originality/value Both the dynamic transmission model and multi-objective optimization model are established to analyze the effects of main design parameters on the dynamic characteristics of hydro-viscous flexible drive.


Sign in / Sign up

Export Citation Format

Share Document