Study on the structural stability evaluation of umbilical winch for ROV LARS

2018 ◽  
Vol 35 (1) ◽  
pp. 202-210
Author(s):  
Namsub Woo ◽  
Sangmok Han ◽  
Youngju Kim ◽  
Sunchul Huh ◽  
Hyunji Kim

Purpose The purpose of this study is structural stability evaluation of umbilical winch. In accordance with the recent trend for developing natural resources, high-technology equipment on exploration ships is becoming more technologically advanced. One such piece of high-technology equipment is the umbilical winch. In this study, the umbilical winch is divided into two parts (drum and winch), where each is respectively designed with three dimensional models using CATIA, and dynamic simulation and structural analysis are performed using ANSYS. Design/methodology/approach In this paper, the winch is divided into two parts for finite element analysis, the drum and whole winch model, and the parts are designed as three-dimensional models except for some small parts, such as bolt holes. Dynamic simulation and structural analysis are then performed using ANSYS. The analysis results ensure the reliability of the design methods and will be used in the domestic localization of remote operated vehicle (ROV) launch and recovery systems (LARS). Findings The strain is identified from the results, but it is very small. Some stress is concentrated at the lower corner of the drum, but the maximum stress value is lower than the allowable stress; therefore, the structure has no impact on the strain and stress. Thus, it is determined that the designed structure is safe. The results ensure the reliability of the design methods and will be used in the domestic localization of ROV LARS. Originality/value Previous studies focus on the static and mechanic problems of the winch by considering winch and drum breakage in the umbilical winch system. However, ships have a nonlinear motion characteristic with six degrees of freedom according to the constant influence of the external environment. In addition, from a design perspective, the dynamic characteristics (e.g. the ship’s motions) are more important than the static characteristics. Thus, the authors focus on winch stability securement with variable loads, such as ships moving, wave disturbance and other such important environment conditions.

1975 ◽  
Vol 39 (8) ◽  
pp. 544-546
Author(s):  
HL Wakkerman ◽  
GS The ◽  
AJ Spanauf

2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


2011 ◽  
Vol 49 (4) ◽  
pp. 326-327 ◽  
Author(s):  
Karen A. Eley ◽  
Robin Richards ◽  
Dermot Dobson ◽  
Alf Linney ◽  
Stephen R. Watt-Smith

Sign in / Sign up

Export Citation Format

Share Document