Quasilinearized Scale-3 Haar wavelets-based algorithm for numerical simulation of fractional dynamical systems

2018 ◽  
Vol 35 (5) ◽  
pp. 1907-1931 ◽  
Author(s):  
R.C. Mittal ◽  
Sapna Pandit

Purpose The main purpose of this work is to develop a novel algorithm based on Scale-3 Haar wavelets (S-3 HW) and quasilinearization for numerical simulation of dynamical system of ordinary differential equations. Design/methodology/approach The first step in the development of the algorithm is quasilinearization process to linearize the problem, and then Scale-3 Haar wavelets are used for space discretization. Finally, the obtained system is solved by Gauss elimination method. Findings Some numerical examples of fractional dynamical system are considered to check the accuracy of the algorithm. Numerical results show that quasilinearization with Scale-3 Haar wavelet converges fast even for small number of collocation points as compared of classical Scale-2 Haar wavelet (S-2 HW) method. The convergence analysis of the proposed algorithm has been shown that as we increase the resolution level of Scale-3 Haar wavelet error goes to zero rapidly. Originality/value To the best of authors’ knowledge, this is the first time that new Haar wavelets Scale-3 have been used in fractional system. A new scheme is developed for dynamical system based on new Scale-3 Haar wavelets. These wavelets take less time than Scale-2 Haar wavelets. This approach extends the idea of Jiwari (2015, 2012) via translation and dilation of Haar function at Scale-3.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapna Pandit ◽  
R.C. Mittal

Purpose This paper aims to propose a novel approach based on uniform scale-3 Haar wavelets for unsteady state space fractional advection-dispersion partial differential equation which arises in complex network, fluid dynamics in porous media, biology, chemistry and biochemistry, electrode – electrolyte polarization, finance, system control, etc. Design/methodology/approach Scale-3 Haar wavelets are used to approximate the space and time variables. Scale-3 Haar wavelets converts the problems into linear system. After that Gauss elimination is used to find the wavelet coefficients. Findings A novel algorithm based on Haar wavelet for two-dimensional fractional partial differential equations is established. Error estimation has been derived by use of property of compactly supported orthonormality. The correctness and effectiveness of the theoretical arguments by numerical tests are confirmed. Originality/value Scale-3 Haar wavelets are used first time for these types of problems. Second, error analysis in new work in this direction.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gopal Priyadarshi ◽  
B.V. Rathish Kumar

Purpose In the past few years, Haar wavelet-based numerical methods have been applied successfully to solve linear and nonlinear partial differential equations. This study aims to propose a wavelet collocation method based on Haar wavelets to identify a parameter in parabolic partial differential equations (PDEs). As Haar wavelet is defined in a very simple way, implementation of the Haar wavelet method becomes easier than the other numerical methods such as finite element method and spectral method. The computational time taken by this method is very less because Haar matrices and Haar integral matrices are stored once and used for each iteration. In the case of Haar wavelet method, Dirichlet boundary conditions are incorporated automatically. Apart from this property, Haar wavelets are compactly supported orthonormal functions. These properties lead to a huge reduction in the computational cost of the method. Design/methodology/approach The aim of this paper is to reconstruct the source control parameter arises in quasilinear parabolic partial differential equation using Haar wavelet-based numerical method. Haar wavelets possess various properties, for example, compact support, orthonormality and closed form expression. The main difficulty with the Haar wavelet is its discontinuity. Therefore, this paper cannot directly use the Haar wavelet to solve partial differential equations. To handle this difficulty, this paper represents the highest-order derivative in terms of Haar wavelet series and using successive integration this study obtains the required term appearing in the problem. Taylor series expansion is used to obtain the second-order partial derivatives at collocation points. Findings An efficient and accurate numerical method based on Haar wavelet has been proposed for parameter identification in quasilinear parabolic partial differential equations. Numerical results are obtained from the proposed method and compared with the existing results obtained from various finite difference methods including Saulyev method. It is shown that the proposed method is superior than the conventional finite difference methods including Saulyev method in terms of accuracy and CPU time. Convergence analysis is presented to show the accuracy of the proposed method. An efficient algorithm is proposed to find the wavelet coefficients at target time. Originality/value The outcome of the paper would have a valuable role in the scientific community for several reasons. In the current scenario, the parabolic inverse problem has emerged as very important problem because of its application in many diverse fields such as tomography, chemical diffusion, thermoelectricity and control theory. In this paper, higher-order derivative is represented in terms of Haar wavelet series. In other words, we represent the solution in multiscale framework. This would enable us to understand the solution at various resolution levels. In the case of Haar wavelet, this paper can achieve a very good accuracy at very less resolution levels, which ultimately leads to huge reduction in the computational cost.


2017 ◽  
Vol 27 (8) ◽  
pp. 1814-1850 ◽  
Author(s):  
Sapna Pandit ◽  
Manoj Kumar ◽  
R.N. Mohapatra ◽  
Ali Saleh Alshomrani

Purpose This paper aims to find the numerical solution of planar and non-planar Burgers’ equation and analysis of the shock behave. Design/methodology/approach First, the authors discritize the time-dependent term using Crank–Nicholson finite difference approximation and use quasilinearization to linearize the nonlinear term then apply Scale-2 Haar wavelets for space integration. After applying this scheme on partial differential, the equation transforms into a system of algebraic equation. Then, the system of equation is solved using Gauss elimination method. Findings Present method is the extension of the method (Jiwari, 2012). The numerical solutions using Scale-2 Haar wavelets prove that the proposed method is reliable for planar and non-planar nonlinear Burgers’ equation and yields results better than other methods and compatible with the exact solutions. Originality/value The numerical results for non-planar Burgers’ equation are very sparse. In the present paper, the authors identify where the shock wave and discontinuity occur in planar and non-planar Burgers’' equation.


Author(s):  
Manoj Kumar ◽  
Sapna Pandit

Purpose – The purpose of this paper is to discuss the application of the Haar wavelets for solving linear and nonlinear Fokker-Planck equations with appropriate initial and boundary conditions. Design/methodology/approach – Haar wavelet approach converts the problems into a system of linear algebraic equations and the obtained system is solved by Gauss-elimination method. Findings – The accuracy of the proposed scheme is demonstrated on three test examples. The numerical solutions prove that the proposed method is reliable and yields compatible results with the exact solutions. The scheme provides better results than the schemes [9, 14]. Originality/value – The developed scheme is a new scheme for Fokker-Planck equations. The scheme based on Haar wavelets is expended for nonlinear partial differential equations with variable coefficients.


2020 ◽  
Vol 26 (3) ◽  
pp. 295-314 ◽  
Author(s):  
J. Kalu Osiri

Purpose This paper aims to present the Igbo management philosophy as having the potential to bring about success in Africa and propose a framework that comprises a set of values and three key institutions: the marketplace, the family and the apprenticeship system. The paper shows that effective leaders are servant-leaders who sacrifice for others. Design/methodology/approach This paper relied on earlier and contemporary peer-reviewed, news media and books. These materials offered insight into what Igbos believed, how they behaved and how they historically organized their lives. Materials authored by both African and non-African authors were considered. Findings The researcher concluded that Igbos developed a management system based on a philosophy that is African, which is different from the Western system. A framework for the Igbo management philosophy is derived from complex interactions of values and institutions in Igbo societies. The researcher finds that a set of values, particularly, the value of sacrifice, is crucial for ensuring effective business leadership. Originality/value Western influence on management has persisted. However, with the economic rise of China, Asian philosophical thought has taken a more center stage in academic management scholarship. Even though human civilization occurred in Africa, it is perplexing that African management systems are not mainstream. There has been research on indigenous African systems and African management philosophy in general. Previous scholarship has also explored the Igbo culture as a whole and their apprenticeship system; however, to the best of the author’s knowledge, this is the first time a framework for an Igbo management philosophy is proposed.


Author(s):  
G. O. Hutchinson

The chapter looks at the division between poetry and prose in ancient and other literatures, and shows the importance of rhythmic patterning in ancient prose. The development of rhythmic prose in Greek and Latin is sketched, the system explained and illustrated (from Latin). It is firmly established, for the first time, which of the main Greek non-Christian authors 31 BC–AD 300 write rhythmically. The method takes a substantial sample of random sentence-endings (usually 400) from each of a large number of Imperial authors; it compares that sample with one sample of the same size (400) drawn randomly from a range of authors earlier than the invention of this rhythmic system. A particular sort of X2-test is applied. Many Imperial authors, it emerges, write rhythmically; many do not. The genres most likely to offer rhythmic writing are, unexpectedly, narrative: historiography and the novel.


2019 ◽  
Vol 36 (2) ◽  
pp. 21-22
Author(s):  
Ray Harper

Purpose The purpose of this paper is to summarise a number of presentations at Day 1 of the Internet Librarian International conference, London, UK (16 October 2018). This was the 20th conference in the series, and the three key themes included were the next-gen library and librarian; understanding users, usage and user experience; and inclusion and inspiration: libraries making a difference. Design/methodology/approach This paper reports from the viewpoint of a first-time attendee of the conference. This summarises the main issues raised by each presentation and draws out the key learning points for practical situations. Findings The conference covered a variety of practical ways in which libraries can use technology to support users and make decisions about services. These include developing interactive physical spaces which include augmented reality; introducing “chat-bots” to support users; using new techniques to analyse data; and piloting new ways to engage users (such as coding clubs). A key theme was how we use and harness data in a way that is ethical, effective and relevant to library services. Originality/value This conference focussed on practical examples of how library and information services across sectors and countries are innovating in a period of huge change. The conference gave delegates numerous useful ideas and examples of best practice and demonstrated the strength of the profession in adapting to new technologies and developments.


2019 ◽  
Vol 37 (1) ◽  
pp. 134-142
Author(s):  
Alberto Bueno-Guerrero

Purpose This paper aims to study the conditions for the hedging portfolio of any contingent claim on bonds to have no bank account part. Design/methodology/approach Hedging and Malliavin calculus techniques recently developed under a stochastic string framework are applied. Findings A necessary and sufficient condition for the hedging portfolio to have no bank account part is found. This condition is applied to a barrier option, and an example of a contingent claim whose hedging portfolio has a bank account part different from zero is provided. Originality/value To the best of the authors’ knowledge, this is the first time that this issue has been addressed in the literature.


Sign in / Sign up

Export Citation Format

Share Document