Numerical analysis of radiative heat transfer in an inhomogeneous and non-isothermal combustion system considering H2O/CO2/CO and soot

2017 ◽  
Vol 27 (9) ◽  
pp. 1967-1985 ◽  
Author(s):  
Zhenhua Wang ◽  
Shikui Dong ◽  
Zhihong He ◽  
Lei Wang ◽  
Weihua Yang ◽  
...  

Purpose H2O, CO2 and CO are three main species in combustion systems which have high volume fractions. In addition, soot has strong absorption in the infrared band. Thus, H2O, CO2, CO and soot may take important roles in radiative heat transfer. To provide calculations with high accuracy, all of the participating media should be considered non-gray media. Thus, the purpose of this paper is to study the effect of non-gray participating gases and soot on radiative heat transfer in an inhomogeneous and non-isothermal system. Design/methodology/approach To solve the radiative heat transfer, the fluid flow as well as the pressure, temperature and species distributions were first computed by FLUENT. The radiative properties of the participating media are calculated by the Statistical Narrow Band correlated K-distribution (SNBCK), which is based on the database of EM2C. The calculation of soot properties is based on the Mie scattering theory and Rayleigh theory. The radiative heat transfer is calculated by the discrete ordinate method (DOM). Findings Using SNBCK to calculate the radiative properties and DOM to calculate the radiative heat transfer, the influence of H2O, CO2, CO and soot on radiation heat flux to the wall in combustion system was studied. The results show that the global contribution of CO to the radiation heat flux on the wall in the kerosene furnace was about 2 per cent, but that it can reach up to 15 per cent in a solid fuel gasifier. The global contribution of soot to the radiation heat flux on the wall was 32 per cent. However, the scattering of soot has a tiny influence on radiation heat flux to the wall. Originality/value This is the first time H2O, CO2, CO and the scattering of soot were all considered simultaneously to study the radiation heat flux in combustion systems.

Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000 K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells (Journal of Power Sources, Vol. 124, No. 2, pp. 453–458) by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia (YSZ) electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster-Schwartzchild two-flux approximation is used to solve the radiative transfer equation (RTE) for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a 3-D thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT CFD software. The results of sample calculations are reported and compared against the baseline cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


2005 ◽  
Vol 2 (4) ◽  
pp. 258-262 ◽  
Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells [J. Power Sources, 124, No. 2, pp. 453–458] by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster–Schwartzchild two-flux approximation is used to solve the radiative transfer equation for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a three-dimensional thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT computational fluid dynamics software. The results of sample calculations are reported and compared against the base line cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


Author(s):  
Aleksey V. Nenarokomov ◽  
Leonid A. Dombrovsky ◽  
Irina V. Krainova ◽  
Oleg M. Alifanov ◽  
Sergey A. Budnik

Purpose The purpose of this study is to optimize multilayer vacuum thermal insulation (MLI) of modern high-weight spacecrafts. An adequate mathematical simulation of heat transfer in the MLI is impossible if there is no available information on the main insulation properties. Design/methodology/approach The results of experiments in thermo-vacuum facilities are used to re-estimate some radiative properties of metallic foil/metalized polymer foil and spacer on the basis of the inverse problem solution. The experiments were carried out for the sample of real MLI used for the BP-Colombo satellite (ESA). The recently developed theoretical model based on neglecting possible near-field effects in radiative heat transfer between closely spaced aluminum foils was used in theoretical predictions of heat transfer through the MLI. Findings A comparison of the computational results and the experimental data confirms that there are no significant near-field effects between the neighboring MLI layers. It means that there is no considerable contradiction between the far-field model of radiative transfer in MLI and the experimental estimates. Originality/value An identification procedure for mathematical model of the multilayer thermal insulation showed that a modified theoretical model developed recently can be used to estimate thermal properties of the insulation at conditions of space vacuum.


1983 ◽  
Vol 105 (1) ◽  
pp. 76-81 ◽  
Author(s):  
T. W. Tong ◽  
Q. S. Yang ◽  
C. L. Tien

Two experiments have been conducted to study radiative heat transfer in lightweight fibrous insulations (LWFI). The spectral extinction coefficients for a commercial LWFI have been measured via transmission measurements, and a guarded hot plate apparatus has been used to measure the radiant heat flux as well as the total heat flux in the insulation. The experimental results are compared with the theoretical values calculated according to the analytical models presented in Part I of this paper. The comparisons reveal that the analytical models are useful in giving representative values for the radiative properties of typical LWFI. However, only qualitative agreements have been obtained for the heat transfer results.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Gautham Krishnamoorthy ◽  
Caitlyn Wolf

This study assesses the required fidelities in modeling particle radiative properties and particle size distributions (PSDs) of combusting particles in Computational Fluid Dynamics (CFD) investigations of radiative heat transfer during oxy-combustion of coal and biomass blends. Simulations of air and oxy-combustion of coal/biomass blends in a 0.5 MW combustion test facility were carried out and compared against recent measurements of incident radiative fluxes. The prediction variations to the combusting particle radiative properties, particle swelling during devolatilization, scattering phase function, biomass devolatilization models, and the resolution (diameter intervals) employed in the fuel PSD were assessed. While the wall incident radiative flux predictions compared reasonably well with the experimental measurements, accounting for the variations in the fuel, char and ash radiative properties were deemed to be important as they strongly influenced the incident radiative fluxes and the temperature predictions in these strongly radiating flames. In addition, particle swelling and the diameter intervals also influenced the incident radiative fluxes primarily by impacting the particle extinction coefficients. This study highlights the necessity for careful selection of particle radiative property, and diameter interval parameters and the need for fuel fragmentation models to adequately predict the fly ash PSD in CFD simulations of coal/biomass combustion.


Sign in / Sign up

Export Citation Format

Share Document