Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics

Author(s):  
Abdelraheem Mahmoud Aly

Purpose – Modeling of multi-phase flows for Rayleigh-Taylor instability and natural convection in a square cavity has been investigated using an incompressible smoothed particle hydrodynamics (ISPH) technique. In this technique, incompressibility is enforced by using SPH projection method and a stabilized incompressible SPH method by relaxing the density invariance condition is applied. The paper aims to discuss these issues. Design/methodology/approach – The Rayleigh-Taylor instability is introduced in two and three phases by using ISPH method. The author simulated natural convection in a square/cubic cavity using ISPH method in two and three dimensions. The solutions represented in temperature, vertical velocity and horizontal velocity have been studied with different values of Rayleigh number Ra parameter (103=Ra=105). In addition, characteristic based scheme in Finite Element Method is introduced for modeling the natural convection in a square cavity. Findings – The results for Rayleigh-Taylor instability and natural convection flow had been compared with the previous researches. Originality/value – Modeling of multi-phase flows for Rayleigh-Taylor instability and natural convection in a square cavity has been investigated using an ISPH technique. In ISPH method, incompressibility is enforced by using SPH projection method and a stabilized incompressible SPH method by relaxing the density invariance condition is introduced. The Rayleigh-Taylor instability is introduced in two and three phases by using ISPH method. The author simulated natural convection in a square/cubic cavity using ISPH method in two and three dimensions.

Author(s):  
Abdelraheem M. Aly

Purpose This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating pipe and filled with nanofluid. Design/methodology/approach The Lagrangian description of the governing partial differential equations are solved numerically using improved ISPH method. The inner oscillating pipe is divided into two different pipes as an open and a closed pipe. The sidewalls of the cavity are cooled with a lower concentration C_c and the horizontal walls are adiabatic. The inner pipe is heated with higher concentration C_h. The analysis has been conducted for the two different cases of inner oscillating pipes under the effects of wide range of governing parameters. Findings It is found that a suitable oscillating pipe makes a well convective transport inside a cavity. Presence of the oscillating pipe has effects on the heat and mass transfer and fluid intensity inside a cavity. Hartman parameter suppresses the velocity and weakens the maximum values of the stream function. An increase on Hartman, Lewis and solid volume fraction parameters leads to an increase on average Nusselt number on an oscillating pipe and left cavity wall. Average Sherwood number on an oscillating pipe and left cavity wall decreases as Hartman parameter increases. Originality/value The main objective of this work is to study the MHD double-diffusive natural convection of a nanofluid in a square cavity containing an oscillating pipe using improved ISPH method.


2019 ◽  
Vol 29 (12) ◽  
pp. 4569-4597 ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Zehba Raizah ◽  
Mitsuteru Asai

Purpose This study aims to focus on the numerical simulation of natural convection from heated novel fin shapes in a cavity filled with nanofluid and saturated with a partial layer of porous medium using improved incompressible smoothed particle hydrodynamics (ISPH) method. Design/methodology/approach The dimensionless of Lagrangian description for the governing equations were numerically solved using improved ISPH method. The current ISPH method was improved in term of wall boundary treatment by using renormalization kernel function. The effects of different novel heated (Tree, T, H, V, and Z) fin shapes, Rayleigh number Ra(103 – 106 ), porous height Hp (0.2-0.6), Darcy parameter Da(10−5 − 10−1 ) and solid volume fraction ϕ(0.0-0.05) on the heat transfer of nanofluid have been investigated. Findings The results showed that the variation on the heated novel fin shapes gives a suitable choice for enhancement heat transfer inside multi-layer porous cavity. Among all fin shapes, the H-fin shape causes the maximum stream function and Z-fin shape causes the highest value of average Nusselt number. The concentrations of the fluid flows in the nanofluid region depend on the Rayleigh and Darcy parameters. In addition, the penetrations of the fluid flows through porous layers are affected by porous heights and Darcy parameter. Originality/value Natural convection from novel heated fins in a cavity filled with nanofluid and saturated with a partial layer of porous medium have been investigated numerically using improved ISPH method.


2019 ◽  
Vol 37 (1) ◽  
pp. 181-202 ◽  
Author(s):  
Zohreh Heydari ◽  
Gholamreza Shobeyri ◽  
Seyed Hossein Ghoreishi Najafabadi

Purpose This paper aims to examine the accuracy of several higher-order incompressible smoothed particle hydrodynamics (ISPH) Laplacian models and compared with the classic model (Shao and Lo, 2003). Design/methodology/approach The numerical errors in solving two-dimensional elliptic partial differential equations using the Laplacian models are investigated for regular and highly irregular node distributions over a unit square computational domain. Findings The numerical results show that one of the Laplacian models, which is newly developed by one of the authors (Shobeyri, 2019) can get the smallest errors for various used node distributions. Originality/value The newly proposed model is formulated by the hybrid of the standard ISPH Laplacian model combined with Taylor expansion and moving least squares method. The superiority of the proposed model is significant when multi-resolution irregular node distributions commonly seen in adaptive refinement strategies used to save computational cost are applied.


Author(s):  
K. Szewc ◽  
A. Tanière ◽  
J. Pozorski ◽  
J.-P. Minier

AbstractSmoothed Particle Hydrodynamics (SPH) is a fully Lagrangian, particle-based technique for fluid-flow computations. The main advantage over Eulerian techniques is no requirement of the grid, therefore this is a natural approach to simulate multi-phase flows. The main purpose of this study is an overview and the critical analysis of the SPH variants to see their influence on the flow computations with many components (the historical way of improving the SPH approach). The comparison is performed using common validation (two- and three-dimensional) tests: the Rayleigh-Taylor instability, a square-droplet deformation and a bubble rising in water. The special attention will be given to compare different surface-tension models.


Author(s):  
Abdelraheem Mahmoud Aly ◽  
Mitsuteru ASAI

Purpose – A study on heat and mass transfer behavior for an anisotropic porous medium embedded in square cavity/annulus is conducted using incompressible smoothed particle hydrodynamics (ISPH) method. In the case of square cavity, the left wall has hot temperature T_h and mass C_h and the right wall have cool temperature T_c and mass C_c and both of the top and bottom walls are adiabatic. While in the case of square annulus, the inner surface wall is considered to have a cool temperature T_c and mass C_c while the outer surface is exposed to a hot temperature T_h and mass C_h. The paper aims to discuss these issues. Design/methodology/approach – The governing partial differential equations are transformed to non-dimensional governing equations and are solved using ISPH method. The results present the influences of the Dufour and Soret effects on the fluid flow and heat and mass transfer. Findings – The effects of various physical parameters such as Darcy parameter, permeability ratio, inclination angle of permeability and Rayleigh numbers on the temperature and concentration profiles together with the local Nusselt and Sherwood numbers are presented graphically. The results from the current ISPH method are well-validated and have favorable comparisons with previously published results and solutions by the finite volume method. Originality/value – A study on heat and mass transfer behavior on an anisotropic porous medium embedded in square cavity/annulus is conducted using Incompressible Smoothed Particle Hydrodynamics (ISPH) method. In the ISPH algorithm, a semi-implicit velocity correction procedure is utilized, and the pressure is implicitly evaluated by solving pressure Poisson equation (PPE). The evaluated pressure has been improved by relaxing the density invariance condition to formulate a modified PPE.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zehba Raizah ◽  
Mitsuteru Asai ◽  
Abdelraheem M. Aly

Purpose The purpose of this study is to apply the incompressible smoothed particle hydrodynamics (ISPH) method to simulate the natural convection flow from an inner heated Y-fin inside Y-shaped enclosure filled with nanofluid. Design/methodology/approach The dimensionless governing partial differential equations are described in the Lagrangian form and solved by an implicit scheme of the ISPH method. The embedded Y-fin is kept at a high temperature Th with variable heights during the simulations. The lower area of Y-shaped enclosure is squared with width L = 1 m and its side-walls are kept at a low temperature Tc. The upper area of the Y-shaped enclosure is V-shaped with width 0.5 L for each side and its walls are adiabatic. Findings The performed simulations revealed that the height of the inner heated Y-fin plays an important role in the heat transfer and fluid flow inside the Y-shaped enclosure, where it enhances the heat transfer. Rayleigh number augments the buoyancy force inside the Y-shaped enclosure and, consequently, it has a strong impact on temperature distributions and strength of the fluid flow inside Y-shaped enclosure. Adding more concentration of the nanofluid until 10% has a slight effect on the temperature distributions and it reduces the strength of the fluid flow inside Y-shaped enclosure. In addition, the average Nusselt number is measured along the inner heated Y-fin and it grows as the Rayleigh number increases. The average Nusselt number is decreasing by adding more concentrations of the nanofluid. Originality/value An improved ISPH method is used to simulate the natural convection flow of Y-fin embedded in the Y-shaped enclosure filled with a nanofluid.


Sign in / Sign up

Export Citation Format

Share Document