darcy parameter
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Abdelraheem M. Aly ◽  
Ehab Mohamed Mahmoud ◽  
Hijaz Ahmad ◽  
Shao-Wen Yao

This study presents numerical simulations on double-diffusive flow of a nanofluid in two cavities connected with four vertical gates. Novel shape of an outer square shape mounted on a square cavity by four gates was used. Heterogeneous porous media and Al 2 O 3 -water nanofluid are filled in an inner cavity. Outer rectangle shape is filled with a nanofluid only, and its left walls carry high temperature T h and high concentration C h . The right walls of a rectangle shape carry low temperature T c and low concentration C c and the other walls are adiabatic. An incompressible smoothed particle hydrodynamics (ISPH) method is applied for solving the governing equations of velocities, temperature, and concentration. Results are introduced for the effects of a buoyancy ratio − 2 ≤ N ≤ 2 , Darcy parameter 10 − 3 ≤ Da ≤ 10 − 5 , solid volume fraction 0 ≤ ϕ ≤ 0.05 , and porous levels. Main results are indicated in which the buoyancy ratio parameter adjusts the directions of double-diffusive convection flow in an outer shape and inner cavity. Adding more concentration of nanoparticles reduces the flow speed and maximum of the velocity field. Due to the presence of a porous medium layer in an inner cavity, the Darcy parameter has slight changes inside the rectangle shape.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Zehba Raizah

Purpose The purpose of this study is to simulate the thermo-solutal convection resulting from a circular cylinder hanging in a rod inside a ∧-shaped cavity. Design/methodology/approach The two dimensional ∧-shaped cavity is filled by Al2O3-water nanofluid and saturated by three different levels of heterogeneous porous media. An incompressible smoothed particle hydrodynamics (ISPH) method is adopted to solve the governing equations of the present problem. The present simulations have been performed for the alteration of buoyancy ratio (−2≤N≤2), radius of a circular cylinder (0.05≤Rc≤0.3), a height of a rod (0.1≤Lh≤0.4), Darcy parameter (10−3≤Da≤10−5), Lewis number (1≤Le≤40), solid volume fraction (0≤ϕ≤0.06), porous levels (0≤η1=η2≤1.5)and various boundary-wall conditions. Findings The performed numerical simulations indicated the importance of embedded shapes on the distributions of temperature, concentration and velocity fields inside ∧-shaped cavity. Increasing buoyancy ratio parameter enhances thermo-solutal convection and nanofluid velocity. Adiabatic conditions of the vertical-walls of ∧-shaped cavity augment the distributions of the temperature and concentration. Regardless the Darcy parameter, a homogeneous porous medium gives the lowest values of a nanofluid velocity. Originality/value ISPH method is used to simulate thermo-solutal convection of a nanofluid inside a novel ∧-shaped cavity containing a novel embedded shape and heterogeneous porous media.


2021 ◽  
Vol 11 ◽  
pp. 184798042110342
Author(s):  
Abdelraheem M. Aly ◽  
Ehab Mahmoud Mohamed ◽  
Hakan F. Oztop ◽  
Noura Alsedais

This study deals with the roles of a magnetic field and circular rotation of a circular cylinder on the dissemination of solid phase within a nanofluid-filled square cavity. Two wavy layers of the non-Darcy porous media are situated on the vertical sides of a cavity. An incompressible smoothed particle hydrodynamics (ISPH) method was endorsed to carry out the blending process concerning solid phase into nanofluid and porous media layers. Initially, the solid phase is stationed in a circular cylinder containing two open gates. Implications of a buoyancy ratio ( N = −2: 2), Hartmann number ( Ha = 0: 100), rotational frequency [Formula: see text], Darcy parameter [Formula: see text], Rayleigh number [Formula: see text], nanoparticles parameter [Formula: see text], and amplitude of wavy porous layers [Formula: see text] on the lineaments of heat/mass transport have been carried out. The results revealed that the diffusion of the solid phase is permanently moving toward upward except at opposing flow mode [Formula: see text] toward downward. The lower Rayleigh number reduces the solid-phase diffusions. A reduction in a Darcy parameter lessens the nanofluid speed and solid-phase diffusions in the porous layers. A reduction in [Formula: see text] from [Formula: see text] to [Formula: see text] diminishes the maximum of streamlines [Formula: see text] by 13.19% at [Formula: see text], by 46.75% at [Formula: see text], and by 74.75% at [Formula: see text].


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3031-3050
Author(s):  
Bailu Teng ◽  
Huazhou Li ◽  
Haisheng Yu

Summary For an empty fracture, the fracture permeability (kf) is mainly influenced by the effect of viscous shear from fracture walls and can be analytically estimated if the fracture width (wf) is known a priori (i.e., kf=β2wf2/12, where β2 is the unit-conversion factor). For an adequately propped fracture, the fracture permeability is mainly influenced by the proppant-pack properties and can be approximated with the proppant-pack permeability (kf=kp, where kp is proppant-pack permeability). It can be readily inferred that as the effect of viscous shear fades (or the proppant-pack effect becomes pronounced), there should be a regime within which both the viscous shear and the proppant-pack properties exert significant influences on the fracture permeability. However, the functional relationship between fracture permeability, viscous shear (or fracture width), and proppant-pack properties is still elusive. In this work, we propose a new fracture-permeability model to account for the influences of the proppant-pack permeability, proppant-pack porosity (ϕp), and fracture width on the fracture permeability. This new fracture-permeability model is derived from a modified Brinkman equation. The results calculated with the fracture-permeability model show that with different values of the Darcy parameter, the fluid flow can be divided into viscous-shear-dominated (VSD) regime, transition regime, and Darcy-flow-dominated (DFD) regime. If the Darcy parameter is sufficiently large, the effect of proppant-pack permeability on fracture permeability can be neglected and the fracture permeability can be calculated with the VSD fracture-permeability (FP) (VSD-FP) equation (i.e., kf=β2ϕpwf2/12). If the Darcy parameter is sufficiently small, the effect of viscous shear on fracture permeability can be neglected and the fracture permeability can be calculated with the DFD-FP equation (i.e., kf=kp). Both the VSD-FP and DFD-FP equations are special forms of the proposed fracture-permeability model. For the existing empirical/analytical fracture-conductivity models that neglect the effect of viscous shear, one can multiply these models by the coefficient of viscous shear to make these models capable of estimating the fracture conductivity with large values of Darcy parameter.


2019 ◽  
Vol 29 (12) ◽  
pp. 4569-4597 ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Zehba Raizah ◽  
Mitsuteru Asai

Purpose This study aims to focus on the numerical simulation of natural convection from heated novel fin shapes in a cavity filled with nanofluid and saturated with a partial layer of porous medium using improved incompressible smoothed particle hydrodynamics (ISPH) method. Design/methodology/approach The dimensionless of Lagrangian description for the governing equations were numerically solved using improved ISPH method. The current ISPH method was improved in term of wall boundary treatment by using renormalization kernel function. The effects of different novel heated (Tree, T, H, V, and Z) fin shapes, Rayleigh number Ra(103 – 106 ), porous height Hp (0.2-0.6), Darcy parameter Da(10−5 − 10−1 ) and solid volume fraction ϕ(0.0-0.05) on the heat transfer of nanofluid have been investigated. Findings The results showed that the variation on the heated novel fin shapes gives a suitable choice for enhancement heat transfer inside multi-layer porous cavity. Among all fin shapes, the H-fin shape causes the maximum stream function and Z-fin shape causes the highest value of average Nusselt number. The concentrations of the fluid flows in the nanofluid region depend on the Rayleigh and Darcy parameters. In addition, the penetrations of the fluid flows through porous layers are affected by porous heights and Darcy parameter. Originality/value Natural convection from novel heated fins in a cavity filled with nanofluid and saturated with a partial layer of porous medium have been investigated numerically using improved ISPH method.


2017 ◽  
Vol 27 (9) ◽  
pp. 1955-1966 ◽  
Author(s):  
Fahad Munir Abbasi ◽  
Tasawar Hayat ◽  
Sabir Ali Shehzad ◽  
Ahmed Alsaedi

Purpose The aim of this works is to characterize the role of Cattaneo?Christov heat flux in two-dimensional flows of second-grade and Walter’s liquid B fluid models. Design/methodology/approach In this study similarity transformations have been used to transform the system into ordinary ones. Numerical and analytical solutions are computed through homotopic algorithm and shooting technique. Findings The numerical values of temperature gradient are tabulated, and the temperature gradient reduces rapidly with enhancing values of the Darcy parameter, but this reduction is very slow for Forchheimer parameter. Originality/value No such analyses have been reported in the literature.


2016 ◽  
Vol 685 ◽  
pp. 272-275
Author(s):  
Anna A. Bocharova ◽  
Irina V. Plaksina

Free convection on a vertical surface with Newtonian heating of the form proposed by Merkin (1994) in the fluid-filled porous medium is considered on the basis of the full equations of a viscous liquid. Using dimensional analysis a set of criteria that define the characteristics of flow and heat transfer was derived. Asymptotic analysis of the full equations allowed us to determine the region of applicability of the boundary layer approximation, which was used in the previous studies of this problem. Darcy parameter influence was studied; the composite numerical and analytical solution for stream function and temperature was derived.


2014 ◽  
Vol 30 (2) ◽  
pp. 153-159 ◽  
Author(s):  
A. Ali ◽  
S. Asghar

ABSTRACTThis paper deals with an analytical solution of an oscillatory flow in a channel filled with a porous medium saturated with a viscous fluid. The consideration of porosity in the channel is the basic idea of the paper. The oscillatory waves in the channel with porous medium are produced due to self-excited pressure disturbances caused by inevitable fluctuation in a suction rate at the porous walls. The ensuing steady axial velocity and the time dependent oscillatory axial velocity are found analytically using perturbation method and WKB approximation. The important physical quantities like the velocity profile, amplitude of the oscillation and penetration depth of the oscillatory velocity have been given special emphasis in this analysis. The effects of porosity of the medium on these quantities are calculated analytically and examined graphically. We find that the amplitude of oscillatory velocity and the penetration depth of the oscillatory axial velocity decrease with increasing values of inverse Darcy parameter. The oscillations in the fluid can be minimized by decreasing the permeability of the medium.


Sign in / Sign up

Export Citation Format

Share Document