Double rotations of cylinders on thermosolutal convection of a wavy porous medium inside a cavity mobilized by a nanofluid and impacted by a magnetic field

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Shreen El-Sapa

Purpose The purpose of this paper is to work out the magnetic forces on heat/mass transmission in a cavity filled with a nanofluid and wavy porous medium by applying the incompressible smoothed particle hydrodynamics (ISPH) method. Design/methodology/approach The cavity is filled by a nanofluid and an undulating layer of a porous medium. The inserted two circular cylinders are rotated around the cavity’s center by a uniform circular velocity. The outer circular cylinder has four gates, and it carries two different boundary conditions. The inner circular cylinder is carrying Th and Ch. The Lagrangian description of the dimensionless regulating equations is solved numerically by the ISPH method. Findings The major outcomes of the completed numerical simulations illustrated the significance of the wavy porous layer in declining the nanofluid movements, temperature and concentration in a cavity. The nanofluid movements are declining by an increase in nanoparticle parameter and Hartmann number. The variations on the boundary conditions of an outer circular cylinder are changing the lineaments of heat/mass transfer in a cavity. Originality/value The originality of this study is investigating the dual rotations of the cylinders on magnetohydrodynamics thermosolutal convection of a nanofluid in a cavity saturated by two wavy horizontal porous layers.

Author(s):  
Abdelraheem M. Aly

Purpose This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating pipe and filled with nanofluid. Design/methodology/approach The Lagrangian description of the governing partial differential equations are solved numerically using improved ISPH method. The inner oscillating pipe is divided into two different pipes as an open and a closed pipe. The sidewalls of the cavity are cooled with a lower concentration C_c and the horizontal walls are adiabatic. The inner pipe is heated with higher concentration C_h. The analysis has been conducted for the two different cases of inner oscillating pipes under the effects of wide range of governing parameters. Findings It is found that a suitable oscillating pipe makes a well convective transport inside a cavity. Presence of the oscillating pipe has effects on the heat and mass transfer and fluid intensity inside a cavity. Hartman parameter suppresses the velocity and weakens the maximum values of the stream function. An increase on Hartman, Lewis and solid volume fraction parameters leads to an increase on average Nusselt number on an oscillating pipe and left cavity wall. Average Sherwood number on an oscillating pipe and left cavity wall decreases as Hartman parameter increases. Originality/value The main objective of this work is to study the MHD double-diffusive natural convection of a nanofluid in a square cavity containing an oscillating pipe using improved ISPH method.


2019 ◽  
Vol 29 (12) ◽  
pp. 4569-4597 ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Zehba Raizah ◽  
Mitsuteru Asai

Purpose This study aims to focus on the numerical simulation of natural convection from heated novel fin shapes in a cavity filled with nanofluid and saturated with a partial layer of porous medium using improved incompressible smoothed particle hydrodynamics (ISPH) method. Design/methodology/approach The dimensionless of Lagrangian description for the governing equations were numerically solved using improved ISPH method. The current ISPH method was improved in term of wall boundary treatment by using renormalization kernel function. The effects of different novel heated (Tree, T, H, V, and Z) fin shapes, Rayleigh number Ra(103 – 106 ), porous height Hp (0.2-0.6), Darcy parameter Da(10−5 − 10−1 ) and solid volume fraction ϕ(0.0-0.05) on the heat transfer of nanofluid have been investigated. Findings The results showed that the variation on the heated novel fin shapes gives a suitable choice for enhancement heat transfer inside multi-layer porous cavity. Among all fin shapes, the H-fin shape causes the maximum stream function and Z-fin shape causes the highest value of average Nusselt number. The concentrations of the fluid flows in the nanofluid region depend on the Rayleigh and Darcy parameters. In addition, the penetrations of the fluid flows through porous layers are affected by porous heights and Darcy parameter. Originality/value Natural convection from novel heated fins in a cavity filled with nanofluid and saturated with a partial layer of porous medium have been investigated numerically using improved ISPH method.


Author(s):  
Abdelraheem M. Aly ◽  
Mitsuteru Asai ◽  
Ali J. Chamkha

Purpose – The purpose of this paper is to model mixed convection in a square cavity included circular cylinders motion using an incompressible smoothed particle hydrodynamics (ISPH) technique. Design/methodology/approach – The problem is solved numerically by using the ISPH method. Findings – The SPH tool shows robust performance to simulate the rigid body motion in the mixed convective flow with heat transfer, and it may apply easily to complicated problems in 2D and 3D problem without difficulties. Originality/value – The application of the SPH method to mixed convective flow with heat transfer and its potential application easily to complicated 3D problems is original.


Author(s):  
Tuan Minh Nguyen ◽  
Abdelraheem M. Aly ◽  
Sang-Wook Lee

Purpose The purpose of this paper is to improve the 2D incompressible smoothed particle hydrodynamics (ISPH) method by working on the wall boundary conditions in ISPH method. Here, two different wall boundary conditions in ISPH method including dummy wall particles and analytical kernel renormalization wall boundary conditions have been discussed in details. Design/methodology/approach The ISPH algorithm based on the projection method with a divergence velocity condition with improved boundary conditions has been adapted. Findings The authors tested the current ISPH method with the improved boundary conditions by a lid-driven cavity for different Reynolds number 100 ≤ Re ≤ 1,000. The results are well validated with the benchmark problems. Originality/value In the case of dummy wall boundary particles, the homogeneous Newman boundary condition was applied in solving the linear systems of pressure Poisson equation. In the case of renormalization wall boundary conditions, the authors analytically computed the renormalization factor and its gradient based on a quintic kernel function.


Author(s):  
Abdelraheem Mahmoud Aly ◽  
Mitsuteru ASAI

Purpose – A study on heat and mass transfer behavior for an anisotropic porous medium embedded in square cavity/annulus is conducted using incompressible smoothed particle hydrodynamics (ISPH) method. In the case of square cavity, the left wall has hot temperature T_h and mass C_h and the right wall have cool temperature T_c and mass C_c and both of the top and bottom walls are adiabatic. While in the case of square annulus, the inner surface wall is considered to have a cool temperature T_c and mass C_c while the outer surface is exposed to a hot temperature T_h and mass C_h. The paper aims to discuss these issues. Design/methodology/approach – The governing partial differential equations are transformed to non-dimensional governing equations and are solved using ISPH method. The results present the influences of the Dufour and Soret effects on the fluid flow and heat and mass transfer. Findings – The effects of various physical parameters such as Darcy parameter, permeability ratio, inclination angle of permeability and Rayleigh numbers on the temperature and concentration profiles together with the local Nusselt and Sherwood numbers are presented graphically. The results from the current ISPH method are well-validated and have favorable comparisons with previously published results and solutions by the finite volume method. Originality/value – A study on heat and mass transfer behavior on an anisotropic porous medium embedded in square cavity/annulus is conducted using Incompressible Smoothed Particle Hydrodynamics (ISPH) method. In the ISPH algorithm, a semi-implicit velocity correction procedure is utilized, and the pressure is implicitly evaluated by solving pressure Poisson equation (PPE). The evaluated pressure has been improved by relaxing the density invariance condition to formulate a modified PPE.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zehba Raizah ◽  
Mitsuteru Asai ◽  
Abdelraheem M. Aly

Purpose The purpose of this study is to apply the incompressible smoothed particle hydrodynamics (ISPH) method to simulate the natural convection flow from an inner heated Y-fin inside Y-shaped enclosure filled with nanofluid. Design/methodology/approach The dimensionless governing partial differential equations are described in the Lagrangian form and solved by an implicit scheme of the ISPH method. The embedded Y-fin is kept at a high temperature Th with variable heights during the simulations. The lower area of Y-shaped enclosure is squared with width L = 1 m and its side-walls are kept at a low temperature Tc. The upper area of the Y-shaped enclosure is V-shaped with width 0.5 L for each side and its walls are adiabatic. Findings The performed simulations revealed that the height of the inner heated Y-fin plays an important role in the heat transfer and fluid flow inside the Y-shaped enclosure, where it enhances the heat transfer. Rayleigh number augments the buoyancy force inside the Y-shaped enclosure and, consequently, it has a strong impact on temperature distributions and strength of the fluid flow inside Y-shaped enclosure. Adding more concentration of the nanofluid until 10% has a slight effect on the temperature distributions and it reduces the strength of the fluid flow inside Y-shaped enclosure. In addition, the average Nusselt number is measured along the inner heated Y-fin and it grows as the Rayleigh number increases. The average Nusselt number is decreasing by adding more concentrations of the nanofluid. Originality/value An improved ISPH method is used to simulate the natural convection flow of Y-fin embedded in the Y-shaped enclosure filled with a nanofluid.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Zehba Raizah

Purpose The purpose of this study is to simulate the thermo-solutal convection resulting from a circular cylinder hanging in a rod inside a ∧-shaped cavity. Design/methodology/approach The two dimensional ∧-shaped cavity is filled by Al2O3-water nanofluid and saturated by three different levels of heterogeneous porous media. An incompressible smoothed particle hydrodynamics (ISPH) method is adopted to solve the governing equations of the present problem. The present simulations have been performed for the alteration of buoyancy ratio (−2≤N≤2), radius of a circular cylinder (0.05≤Rc≤0.3), a height of a rod (0.1≤Lh≤0.4), Darcy parameter (10−3≤Da≤10−5), Lewis number (1≤Le≤40), solid volume fraction (0≤ϕ≤0.06), porous levels (0≤η1=η2≤1.5)and various boundary-wall conditions. Findings The performed numerical simulations indicated the importance of embedded shapes on the distributions of temperature, concentration and velocity fields inside ∧-shaped cavity. Increasing buoyancy ratio parameter enhances thermo-solutal convection and nanofluid velocity. Adiabatic conditions of the vertical-walls of ∧-shaped cavity augment the distributions of the temperature and concentration. Regardless the Darcy parameter, a homogeneous porous medium gives the lowest values of a nanofluid velocity. Originality/value ISPH method is used to simulate thermo-solutal convection of a nanofluid inside a novel ∧-shaped cavity containing a novel embedded shape and heterogeneous porous media.


Sign in / Sign up

Export Citation Format

Share Document