Large eddy simulation of an axial pump with coupled flow rate calculation using the sharp interface immersed boundary method

2019 ◽  
Vol 29 (7) ◽  
pp. 2253-2276
Author(s):  
Mohammad Haji Mohammadi ◽  
Joshua R. Brinkerhoff

Purpose Turbomachinery, including pumps, are mainly designed to extract/produce energy from/to the flow. A major challenge in the numerical simulation of turbomachinery is the inlet flow rate, which is routinely treated as a known boundary condition for simulation purposes but is properly a dependent output of the solution. As a consequence, the results from numerical simulations may be erroneous due to the incorrect specification of the discharge flow rate. Moreover, the transient behavior of the pumps in their initial states of startup and final states of shutoff phases has not been studied numerically. This paper aims to develop a coupled procedure for calculating the transient inlet flow rate as a part of the solution via application of the control volume method for linear momentum. Large eddy simulation of a four-blade axial hydraulic pump is carried out to calculate the forces at every time step. The sharp interface immersed boundary method is used to resolve the flow around the complex geometry of the propeller, stator and the pipe casing. The effect of the spurious pressure fluctuations, inherent in the sharp interface immersed boundary method, is damped by local time-averaging of the forces. The developed code is validated by comparing the steady-state volumetric flow rate with the experimental data provided by the pump manufacturer. The instantaneous and time-averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field. Design/methodology/approach The authors use control volume analysis for linear momentum to simulate the discharge rate as part of the solution in a large eddy simulation of an axial hydraulic pump. The linear momentum balance equation is used to update the inlet flow rate. The sharp interface immersed boundary method with dynamic Smagorinsky sub-grid stress model and a proper wall model is used. Findings The steady-state volumetric flow rate has been computed and validated by comparing to the flow rate specified by the manufacturer at the simulation conditions, which shows a promising result. The instantaneous and time averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field. Originality/value An approach is proposed for computing the volumetric flow rate as a coupled part of the flow solution, enabling the simulation of turbomachinery at all phases, including the startup/shutdown phase. To the best of the authors’ knowledge, this is the first large eddy simulation of a hydraulic pump to calculate the transient inlet flow rate as a part of the solution rather than specifying it as a fixed boundary condition. The method serves as a numerical framework for simulating problems incorporating complex shapes with moving/stationary parts at all regimes including the transient start-up and shut-down phases.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 311
Author(s):  
Renfei Kuang ◽  
Xiaoping Chen ◽  
Zhiming Zhang ◽  
Zuchao Zhu ◽  
Yu Li

This paper presents a large eddy simulation of a centrifugal pump impeller during a transient condition. The flow rate is sinusoidal and oscillates between 0.25Qd (Qd indicates design load) and 0.75Qd when the rotating speed is maintained. Research shows that in one period, the inlet flow rate will twice reach 0.5Qd, and among the impeller of one moment is a stall state, but the other is a non-stall state. In the process of flow development, the evolution of low-frequency pressure fluctuation shows an obviously sinusoidal form, whose frequency is insensitive to the monitoring position and equals to that of the flow rate. However, inside the impeller, the phase and amplitude in the stall passages lag behind more and are stronger than that in the non-stall passages. Meanwhile, the strongest region of the high-frequency pressure fluctuation appears in the stall passages at the transient rising stage. The second dominant frequency in stall passages is 2.5 times to that in non-stall passages. In addition, similar to the pressure fluctuation, the evolution of the low-frequency head shows a sinusoidal form, whose phase is lagging behind that by one-third of a period in the inlet flow rate.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Yunfei Ma ◽  
Nagabhushana Rao Vadlamani ◽  
Jiahuan Cui ◽  
Paul Tucker

The present research applied a mixed-fidelity approach to examine the fan–intake interaction. Flow separation induced by a distortion generator (DG) is either resolved using large eddy simulation (LES) or modeled using the standard k–ω model, Spalart–Allmaras (SA) model, etc. The immersed boundary method with smeared geometry (immersed boundary method with smeared geometry (IBMSG)) is employed to represent the effect of the fan and a wide range of test cases is studied by varying the (a) height of the DG and (b) proximity of the fan to the DG. Comparisons are drawn between the LES and the Reynolds-averaged Navier–Stokes (RANS) approaches with/without the fan effect. It is found that in the “absence of fan,” the discrepancies between RANS and LES are significant within the separation and reattachment region due to the well-known limitations of the standard RANS models. “With the fan installed,” the deviation between RANS and LES decreases substantially. It becomes minimal when the fan is closest to the DG. It implies that with an installed fan, the inaccuracies of the turbulence model are mitigated by the strong flow acceleration at the casing due to the fan. More precisely, the mass flow redistribution due to the fan has a dominant primary effect on the final predictions and the effect of turbulence model becomes secondary, thereby suggesting that high fidelity eddy resolving simulations provide marginal improvements to the accuracy for the installed cases, particularly for the short intake–fan strategies with fan getting closer to intake lip.


Sign in / Sign up

Export Citation Format

Share Document