scholarly journals Large Eddy Simulation of Periodic Transient Pressure Fluctuation in a Centrifugal Pump Impeller at Low Flow Rate

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 311
Author(s):  
Renfei Kuang ◽  
Xiaoping Chen ◽  
Zhiming Zhang ◽  
Zuchao Zhu ◽  
Yu Li

This paper presents a large eddy simulation of a centrifugal pump impeller during a transient condition. The flow rate is sinusoidal and oscillates between 0.25Qd (Qd indicates design load) and 0.75Qd when the rotating speed is maintained. Research shows that in one period, the inlet flow rate will twice reach 0.5Qd, and among the impeller of one moment is a stall state, but the other is a non-stall state. In the process of flow development, the evolution of low-frequency pressure fluctuation shows an obviously sinusoidal form, whose frequency is insensitive to the monitoring position and equals to that of the flow rate. However, inside the impeller, the phase and amplitude in the stall passages lag behind more and are stronger than that in the non-stall passages. Meanwhile, the strongest region of the high-frequency pressure fluctuation appears in the stall passages at the transient rising stage. The second dominant frequency in stall passages is 2.5 times to that in non-stall passages. In addition, similar to the pressure fluctuation, the evolution of the low-frequency head shows a sinusoidal form, whose phase is lagging behind that by one-third of a period in the inlet flow rate.

2019 ◽  
Vol 29 (7) ◽  
pp. 2253-2276
Author(s):  
Mohammad Haji Mohammadi ◽  
Joshua R. Brinkerhoff

Purpose Turbomachinery, including pumps, are mainly designed to extract/produce energy from/to the flow. A major challenge in the numerical simulation of turbomachinery is the inlet flow rate, which is routinely treated as a known boundary condition for simulation purposes but is properly a dependent output of the solution. As a consequence, the results from numerical simulations may be erroneous due to the incorrect specification of the discharge flow rate. Moreover, the transient behavior of the pumps in their initial states of startup and final states of shutoff phases has not been studied numerically. This paper aims to develop a coupled procedure for calculating the transient inlet flow rate as a part of the solution via application of the control volume method for linear momentum. Large eddy simulation of a four-blade axial hydraulic pump is carried out to calculate the forces at every time step. The sharp interface immersed boundary method is used to resolve the flow around the complex geometry of the propeller, stator and the pipe casing. The effect of the spurious pressure fluctuations, inherent in the sharp interface immersed boundary method, is damped by local time-averaging of the forces. The developed code is validated by comparing the steady-state volumetric flow rate with the experimental data provided by the pump manufacturer. The instantaneous and time-averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field. Design/methodology/approach The authors use control volume analysis for linear momentum to simulate the discharge rate as part of the solution in a large eddy simulation of an axial hydraulic pump. The linear momentum balance equation is used to update the inlet flow rate. The sharp interface immersed boundary method with dynamic Smagorinsky sub-grid stress model and a proper wall model is used. Findings The steady-state volumetric flow rate has been computed and validated by comparing to the flow rate specified by the manufacturer at the simulation conditions, which shows a promising result. The instantaneous and time averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field. Originality/value An approach is proposed for computing the volumetric flow rate as a coupled part of the flow solution, enabling the simulation of turbomachinery at all phases, including the startup/shutdown phase. To the best of the authors’ knowledge, this is the first large eddy simulation of a hydraulic pump to calculate the transient inlet flow rate as a part of the solution rather than specifying it as a fixed boundary condition. The method serves as a numerical framework for simulating problems incorporating complex shapes with moving/stationary parts at all regimes including the transient start-up and shut-down phases.


2017 ◽  
Vol 34 (6) ◽  
pp. 1989-2000 ◽  
Author(s):  
Peijian Zhou ◽  
Fujun Wang ◽  
Jiegang Mou

Purpose Rotating stall is an unsteady flow phenomenon that causes instabilities and low efficiency in pumps. The purpose of this paper is to investigate the rotating stall characteristics and unsteady behavior of stall cells in a centrifugal pump impeller at low flow rates. Design/methodology/approach A developed large eddy simulation with dynamic mixed nonlinear model is performed to evaluate the unsteady flow in a centrifugal pump impeller. The rotating stall flow field through the centrifugal pump impeller is analyzed under three typical flow rates. Frequency spectrum analysis are carried out on the series of pressure fluctuation to get the rotating stall characteristics. The size and intensity of stall cells are also analyzed using time-averaged vorticity and static pressure. Findings The rotating stall cell first occurs in the suction side of the blade and exhibits an obvious life cycle including decay mergence, shedding, growing and development with a low frequency. With the decrease of flow rate, the amplitude of pressure fluctuations in the impeller tends to be larger, the propagated speed of stall cells and rotating stall frequency tends to be smaller, but the number of cells remains unchanged. The size of stall cells increases as the flow rate decreases, but intensity changes is very little. Originality/value The rotating stall characteristics in a centrifugal pump impeller under low flow rates are presented first using a developed large eddy simulation approach.


2003 ◽  
Vol 125 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Rikke K. Byskov ◽  
Christian B. Jacobsen ◽  
Nicholas Pedersen

The flow field in a shrouded six-bladed centrifugal pump impeller has been investigated using large eddy simulation (LES). The effect of the subgrid scales has been modeled through a localized dynamic Smagorinsky model implemented in the commercial CFD code FINE/Turbo. A detailed analysis of the results of LES at design load, Q=Qd, and severe off-design conditions, at quarter-load Q=0.25Qd, is presented. At design load LES reveals a well-behaved flow field with no significant separation. At quarter-load significant differences between adjacent impeller passages are revealed. A steady nonrotating stall phenomenon is observed in the entrance of one passage and a relative eddy develops in the remaining part of the passage. The stall unblocks the adjacent passage which exhibits a flow dominated by rotational effects. Velocities predicted by LES and steady-state Reynolds averaged Navier-Stokes (RANS) simulations based on the Baldwin-Lomax and Chien k-ε turbulence models are compared with experimental data obtained from particle image velocimetry (PIV). The complex two-channel phenomena observed by LES is with satisfactory agreement confirmed by PIV. However, it is found that the two RANS models do not reproduce the stall phenomenon observed at quarterload and are incapable of detecting the differences between the two passages.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ran Tao ◽  
Ruofu Xiao ◽  
Wei Yang ◽  
Fujun Wang

RANS simulation is widely used in the flow prediction of centrifugal pumps. Influenced by impeller rotation and streamline curvature, the eddy viscosity models with turbulence isotropy assumption are not accurate enough. In this study, Spalart-Shur rotation/curvature correction was applied on the SSTk-ωturbulence model. The comparative assessment of the correction was proceeded in the simulations of a centrifugal pump impeller. CFD results were compared with existing PIV and LDV data under the design and low flow rate off-design conditions. Results show the improvements of the simulation especially in the situation that turbulence strongly produced due to undesirable flow structures. Under the design condition, more reasonable turbulence kinetic energy contour was captured after correction. Under the low flow rate off-design condition, the prediction of turbulence kinetic energy and velocity distributions became much more accurate when using the corrected model. So, the rotation/curvature correction was proved effective in this study. And, it is also proved acceptable and recommended to use in the engineering simulations of centrifugal pump impellers.


Author(s):  
Stephan Priebe ◽  
Daniel Wilkin ◽  
Andy Breeze-Stringfellow ◽  
Giridhar Jothiprasad ◽  
Lawrence C. Cheung

Abstract Shock/boundary layer interactions (SBLI) are a fundamental fluid mechanics problem relevant in a wide range of applications including transonic rotors in turbomachinery. This paper uses wall-resolved large eddy simulation (LES) to examine the interaction of normal shocks with laminar and turbulent inflow boundary layers in transonic flow. The calculations were performed using GENESIS, a high-order, unstructured LES solver. The geometry created for this study is a transonic passage with a convergent-divergent nozzle that expands the flow to the desired Mach number upstream of the shock and then introduces constant radius curvature to simulate local airfoil camber. The Mach numbers in the divergent section of the transonic passage simulate single stage commercial fan blades. The results predicted with the LES calculations show significant differences between laminar and turbulent SBLI in terms of shock structure, boundary layer separation and transition, and aerodynamic losses. For laminar flow into the shock, significant flow separation and low-frequency unsteadiness occur, while for turbulent flow into the shock, both the boundary layer loss and the low-frequency unsteadiness are reduced.


Sign in / Sign up

Export Citation Format

Share Document