Determination of volumetric material data from boundary measurements

2020 ◽  
Vol 30 (11) ◽  
pp. 4837-4863
Author(s):  
Rainald Löhner ◽  
Harbir Antil

Purpose The purpose of this study is to determine the possibility of an accurate assessment of the spatial distribution of material properties such as conductivities or impedances from boundary measurements when the governing partial differential equation is a Laplacian. Design/methodology/approach A series of numerical experiments were carefully performed. The results were analyzed and compared. Findings The results to date show that while the optimization procedure is able to obtain spatial distributions of the conductivity k that reduce the cost function significantly, the resulting conductivity k is still significantly different from the target (or real) distribution sought. While the normal fluxes recovered are very close to the prescribed ones, the tangential fluxes can differ considerably. Research limitations/implications At this point, it is not clear why rigorous mathematical proofs yield results of convergence and uniqueness, while in practice, accurate distributions of the conductivity k seem to be elusive. One possible explanation is that the spatial influence of conductivities decreases exponentially with distance. Thus, many different conductivities inside a domain could give rise to very similar (infinitely close) boundary measurements. Practical implications This implies that the estimation of field conductivities (or generally field data) from boundary data is far more difficult than previously assumed when the governing partial differential equation in the domain is a Laplacian. This has consequences for material parameter assessments (e.g. for routine maintenance checks of structures), electrical impedance tomography, and many other applications. Originality/value This is the first time such a finding has been reported in this context.

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Mingjing Du

The traditional reproducing kernel method (TRKM) cannot obtain satisfactory numerical results for solving the partial differential equation (PDE). In this study, for the first time, the abovementioned problems are solved by adaptive piecewise interpolation reproducing kernel method (APIRKM) to obtain the exact and approximate solutions of partial differential equations by means of series expansion using reconstructed kernel function. The highlight of this paper is to obtain more accurate approximate solution and save more time through adaptive discovery. Numerical solutions of the three examples show that the present method is more advantageous than TRKM.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 417-422 ◽  
Author(s):  
T.Y. Pai ◽  
C.F. Ouyang ◽  
Y.C. Liao ◽  
H.G. Leu

Oxygen diffused to water in gravity sewer pipes was studied in a 21 m long, 0.15 m diameter model sewer. At first, the sodium sulfide was added into the clean water to deoxygenate, then the pump was started to recirculate the water and the deoxygenated water was reaerated. The dissolved oxygen microelectrode was installed to measure the dissolved oxygen concentrations varied with flow velocity, time and depth. The dissolved oxygen concentration profiles were constructed and observed. The partial differential equation diffusion model that considered Fick's law including the molecular diffusion term and eddy diffusion term were derived. The analytic solution of the partial differential equation was used to determine the diffusivities by the method of nonlinear regression. The diffusivity values for the oxygen transfer was found to be a function of molecular diffusion, eddy diffusion and flow velocity.


Sign in / Sign up

Export Citation Format

Share Document