Longitudinal parameter estimation from real flight data of unmanned cropped delta flat plate configuration

2016 ◽  
Vol 4 (1) ◽  
pp. 2-22 ◽  
Author(s):  
Subrahmanyam Saderla ◽  
Dhayalan R ◽  
Ajoy Kanti Ghosh

Purpose – The purpose of this paper is to describe the longitudinal aerodynamic characterization of an unmanned cropped delta configuration from real flight data. In order to perform this task an unmanned configuration with cropped delta planform and rectangular cross-section has been designed, fabricated, instrumented and flight tested at flight laboratory in Indian Institute of Technology Kanpur (IITK), India. Design/methodology/approach – As a part of flight test program a real flight database, through various maneuvers, have been generated for the designed unmanned configuration. A dedicated flight data acquisition system, capable of onboard logging and telemetry to ground station, has been used to record the flight data during these flight test experiments. In order to identify the systematic errors in the measurements, the generated flight data has been processed through data compatibility check. Findings – It is observed from the flight path reconstruction that the obtained biases are negligible and the scale factors are almost close to unity. The linear aerodynamic model along with maximum likelihood and least-square methods have been used to perform the parameter estimation from the obtained compatible flight data. The lower values of Cramer-Rao bounds obtained for various parameters has shown significant confidence in the estimated parameters using maximum likelihood method. In order to validate the aerodynamic model used and to increase the confidence in the estimated parameters a proof-of-match exercise has been carried out. Originality/value – The entire work presented is original and all the experiments have been carried out in Flight laboratory of IITK.

2018 ◽  
Vol 122 (1252) ◽  
pp. 889-912
Author(s):  
Subrahmanyam Saderla ◽  
Dhayalan Rajaram ◽  
A. K. Ghosh

ABSTRACTThe current research paper describes the lateral-directional parameter estimation from flight data of a miniature Unmanned Aerial Vehicle (UAV) using Maximum Likelihood (ML), and Neural-Gauss-Newton (NGN) methods. An unmanned configuration with a cropped delta planform and thin rectangular cross-section has been designed, fabricated and instrumented. Exhaustive full-scale wind-tunnel tests were performed on the UAV to extract the form of aerodynamic model that has to be postulated a priori for parameter estimation. Rigorous flight tests have been performed to acquire the flight data for several prescribed manoeuvres. Four sets of compatible flight data have been used to carry out parameter estimation using classical ML and neural-network-based NGN methods. It is observed that the estimated parameters are consistent and the lower values of the Cramer-Rao bound for the corresponding estimates have shown significant confidence in the obtained parameters. Furthermore, to validate the aerodynamic model used and to enhance the confidence in the estimated parameters, a proof of match exercise has been carried out.


2017 ◽  
Vol 121 (1237) ◽  
pp. 320-340 ◽  
Author(s):  
S. Saderla ◽  
R. Dhayalan ◽  
A.K. Ghosh

ABSTRACTThe paper presents the aerodynamic characterization of a low-speed unmanned aerial vehicle, with cropped delta planform and rectangular cross section, at and around high angles-of-attack using flight test methods. Since the linear models used for identification from flight data at low and moderate angles of attack become unsuitable for accurate parameter estimation at high angles of attack, a non-linear aerodynamic model has to be considered. Therefore, the Kirchhoff's flow separation model was used to incorporate the non-linearity in the aerodynamic model in terms of flow separation point and stall characteristic parameters. The Maximum Likelihood (ML) and Neural Gauss-Newton (NGN) methods were used to perform the parameter estimation on one set of low angle-of-attack and one set of near-stall flight data. It is evident from the estimates that the NGN method, which does not involve solving equations of motion, performs on a par with the classical ML method. This may be attributed to the reason that NGN method uses a neural network which has been trained by performing point to point mapping of the measured flight data. This feature of NGN method enhances its application over a wider envelope of high angles of attack flight data.


2019 ◽  
Vol 123 (1269) ◽  
pp. 1807-1839
Author(s):  
S. Saderla ◽  
R. Dhayalan ◽  
K. Singh ◽  
N. Kumar ◽  
A. K. Ghosh

ABSTRACTIn this paper, longitudinal and lateral-directional aerodynamic characterisation of the Cropped Delta Reflex Wing (CDRW) configuration–based unmanned aerial vehicle is carried out by means of full-scale static wind-tunnel tests followed by full-scale flight testing. A predecided set of longitudinal and lateral/directional manoeuvres is performed to acquire the respective flight data, using a dedicated onboard flight data acquisition system. The compatibility of the acquired dynamics is quantified, in terms of scale factors and biases of the measured variables, using Kinematic consistency check. Maximum likelihood (ML), least squares and newly emerging neural Gauss–Newton (NGN) methods were implemented for a wing-alone delta configuration, mainly to capture the dynamic derivatives for both longitudinal and lateral directional cases. Estimated damping and weak dynamic derivatives, which are in general challenging to capture for a wing alone configuration, are consistent using ML and NGN methods. Validation of the estimated parameters with aerodynamic model is performed by proof-of-match exercise and are presented therein.


2018 ◽  
Vol 90 (2) ◽  
pp. 302-311 ◽  
Author(s):  
Dhayalan R. ◽  
Subrahmanyam Saderla ◽  
Ajoy Kanti Ghosh

Purpose The purpose of this paper is to present the application of the neural-based estimation method, Neural-Gauss-Newton (NGN), using the real flight data of a small unmanned aerial vehicle (UAV). Design/methodology/approach The UAVs in general are lighter in weight and their flight is usually influenced by the atmospheric winds because of their relatively lower cruise speeds. During the presence of the atmospheric winds, the aerodynamic forces and moments get modified significantly and the accurate mathematical modelling of the same is highly challenging. This modelling inaccuracy during parameter estimation is routinely treated as the process noise. Furthermore, because of the limited dimensions of the small UAVs, the measurements are usually influenced by the disturbances caused by other subsystems. To handle these measurement and process noises, the estimation methods based on neural networks have been found reliable in the manned aircrafts. Findings Six sets of compatible longitudinal flight data of the designed UAV have been chosen to estimate the parameters using the NGN method. The consistency in the estimates is verified from the obtained mean and the standard deviation and the same has been validated by the proof-of-match exercise. It is evident from the results that the NGN method was able to perform on a par with the conventional maximum likelihood method. Originality/value This is a partial outcome of the research carried out in estimating parameters from the UAVs.


In this paper, we have defined a new two-parameter new Lindley half Cauchy (NLHC) distribution using Lindley-G family of distribution which accommodates increasing, decreasing and a variety of monotone failure rates. The statistical properties of the proposed distribution such as probability density function, cumulative distribution function, quantile, the measure of skewness and kurtosis are presented. We have briefly described the three well-known estimation methods namely maximum likelihood estimators (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) methods. All the computations are performed in R software. By using the maximum likelihood method, we have constructed the asymptotic confidence interval for the model parameters. We verify empirically the potentiality of the new distribution in modeling a real data set.


2014 ◽  
Vol 687-691 ◽  
pp. 787-790
Author(s):  
Rong Jun Yang ◽  
Yao Ye

. For effectively using flight test data to extract drag coefficient, an optimal observer based on parameter estimation technique is proposed. The point mass dynamic equation is used to form the Unscented Kalman Filter (UKF) and the smoother (URTSS) for the estimation of a projectile’s flight states. The projectile flight states are then solved and utilized to extract the drag coefficient information using the observer techniques. The simulation verifies the feasibility of the method: with measurement noise, the accurate drag coefficient is obtained by using the smoother.


2014 ◽  
Vol 1070-1072 ◽  
pp. 2073-2078
Author(s):  
Xiu Ji ◽  
Hui Wang ◽  
Chuan Qi Zhao ◽  
Xu Ting Yan

It is difficult to estimate the parameters of Weibull distribution model using maximum likelihood estimation based on particle swarm optimization (PSO) theory for which is easy to fall into premature and needs more variables, ant colony algorithm theory was introduced into maximum likelihood method, and a parameter estimation method based on ant colony algorithm theory was proposed, an example was simulated to verify the feasibility and effectiveness of this method by comparing with ant colony algorithm and PSO.This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fan Yang ◽  
Hu Ren ◽  
Zhili Hu

The maximum likelihood estimation is a widely used approach to the parameter estimation. However, the conventional algorithm makes the estimation procedure of three-parameter Weibull distribution difficult. Therefore, this paper proposes an evolutionary strategy to explore the good solutions based on the maximum likelihood method. The maximizing process of likelihood function is converted to an optimization problem. The evolutionary algorithm is employed to obtain the optimal parameters for the likelihood function. Examples are presented to demonstrate the proposed method. The results show that the proposed method is suitable for the parameter estimation of the three-parameter Weibull distribution.


2014 ◽  
Vol 602-605 ◽  
pp. 3202-3205
Author(s):  
Xu Sheng Gan ◽  
Xue Qin Tang ◽  
Hai Long Gao

To accurately identify the nonlinear model for aircraft, maximum likelihood method is introduced to analyze the flight test data for compatibility check, which can satisfy the kinematics equations of aircraft at the same time. The experiment shows that the proposed method has a good compatibility check effect, and it is also effective and feasible for flight test data for aircraft.


Sign in / Sign up

Export Citation Format

Share Document