scholarly journals New Lindley Half Cauchy Distribution: Theory and Applications

In this paper, we have defined a new two-parameter new Lindley half Cauchy (NLHC) distribution using Lindley-G family of distribution which accommodates increasing, decreasing and a variety of monotone failure rates. The statistical properties of the proposed distribution such as probability density function, cumulative distribution function, quantile, the measure of skewness and kurtosis are presented. We have briefly described the three well-known estimation methods namely maximum likelihood estimators (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) methods. All the computations are performed in R software. By using the maximum likelihood method, we have constructed the asymptotic confidence interval for the model parameters. We verify empirically the potentiality of the new distribution in modeling a real data set.

Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

In this study, we have introduced a three-parameter probabilistic model established from type I half logistic-Generating family called half logistic modified exponential distribution. The mathematical and statistical properties of this distribution are also explored. The behavior of probability density, hazard rate, and quantile functions are investigated. The model parameters are estimated using the three well known estimation methods namely maximum likelihood estimation (MLE), least-square estimation (LSE) and Cramer-Von-Mises estimation (CVME) methods. Further, we have taken a real data set and verified that the presented model is quite useful and more flexible for dealing with a real data set. KEYWORDS— Half-logistic distribution, Estimation, CVME ,LSE, , MLE


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Rashad Bantan ◽  
Amal S. Hassan ◽  
Mahmoud Elsehetry ◽  
B. M. Golam Kibria

This paper proposed a new probability distribution, namely, the half-logistic xgamma (HLXG) distribution. Various statistical properties, such as, moments, incomplete moments, mean residual life, and stochastic ordering of the proposed distribution, are discussed. Parameter estimation of the half-logistic xgamma distribution is approached by the maximum likelihood method based on complete and censored samples. Asymptotic confidence intervals of model parameters are provided. A simulation study is conducted to illustrate the theoretical results. Moreover, the model parameters of the HLXG distribution are estimated by using the maximum likelihood, least square, maximum product spacing, percentile, and Cramer–von Mises (CVM) methods. Superiority of the new model over some existing distributions is illustrated through three real data sets.


2018 ◽  
Vol 52 (1) ◽  
pp. 43-59
Author(s):  
AMULYA KUMAR MAHTO ◽  
YOGESH MANI TRIPATH ◽  
SANKU DEY

Burr type X distribution is one of the members of the Burr family which was originally derived by Burr (1942) and can be used quite effectively in modelling strength data and also general lifetime data. In this article, we consider efficient estimation of the probability density function (PDF) and cumulative distribution function (CDF) of Burr X distribution. Eight different estimation methods namely maximum likelihood estimation, uniformly minimum variance unbiased estimation, least square estimation, weighted least square estimation, percentile estimation, maximum product estimation, Cremer-von-Mises estimation and Anderson-Darling estimation are considered. Analytic expressions for bias and mean squared error are derived. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. Finally, a real data set has been analyzed for illustrative purposes.


2018 ◽  
Vol 55 (4) ◽  
pp. 498-522
Author(s):  
Morad Alizadeh ◽  
Mahdi Rasekhi ◽  
Haitham M. Yousof ◽  
Thiago G. Ramires ◽  
G. G. Hamedani

In this article, a new four-parameter model is introduced which can be used in mod- eling survival data and fatigue life studies. Its failure rate function can be increasing, decreasing, upside down and bathtub-shaped depending on its parameters. We derive explicit expressions for some of its statistical and mathematical quantities. Some useful characterizations are presented. Maximum likelihood method is used to estimate the model parameters. The censored maximum likelihood estimation is presented in the general case of the multi-censored data. We demonstrate empirically the importance and exibility of the new model in modeling a real data set.


Author(s):  
Ramesh Kumar Joshi ◽  

In this article, a three-parameter continuous distribution is introduced called Logistic inverse Lomax distribution. We have discussed some mathematical and statistical properties of the distribution such as the probability density function, cumulative distribution function and hazard rate function, survival function, quantile function, the skewness, and kurtosis measures. The model parameters of the proposed distribution are estimated using three well-known estimation methods namely maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises estimation (CVME) methods. The goodness of fit of the proposed distribution is also evaluated by fitting it in comparison with some other existing distributions using a real data set.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 592 ◽  
Author(s):  
Mahmoud Mansour ◽  
Mahdi Rasekhi ◽  
Mohamed Ibrahim ◽  
Khaoula Aidi ◽  
Haitham M. Yousof ◽  
...  

In this paper, we first study a new two parameter lifetime distribution. This distribution includes “monotone” and “non-monotone” hazard rate functions which are useful in lifetime data analysis and reliability. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Renyi entropy, δ-entropy, order statistics and probability weighted moments are derived. Non-Bayesian estimation methods such as the maximum likelihood, Cramer-Von-Mises, percentile estimation, and L-moments are used for estimating the model parameters. The importance and flexibility of the new distribution are illustrated by means of two applications to real data sets. Using the approach of the Bagdonavicius–Nikulin goodness-of-fit test for the right censored validation, we then propose and apply a modified chi-square goodness-of-fit test for the Burr X Weibull model. The modified goodness-of-fit statistics test is applied for the right censored real data set. Based on the censored maximum likelihood estimators on initial data, the modified goodness-of-fit test recovers the loss in information while the grouped data follows the chi-square distribution. The elements of the modified criteria tests are derived. A real data application is for validation under the uncensored scheme.


Author(s):  
Parisa Torkaman

The generalized inverted exponential distribution is introduced as a lifetime model with good statistical properties. This paper, the estimation of the probability density function and the cumulative distribution function of with five different estimation methods: uniformly minimum variance unbiased(UMVU), maximum likelihood(ML), least squares(LS), weighted least squares (WLS) and percentile(PC) estimators are considered. The performance of these estimation procedures, based on the mean squared error (MSE) by numerical simulations are compared. Simulation studies express that the UMVU estimator performs better than others and when the sample size is large enough the ML and UMVU estimators are almost equivalent and efficient than LS, WLS and PC. Finally, the result using a real data set are analyzed.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
K. S. Sultan ◽  
A. S. Al-Moisheer

We discuss the two-component mixture of the inverse Weibull and lognormal distributions (MIWLND) as a lifetime model. First, we discuss the properties of the proposed model including the reliability and hazard functions. Next, we discuss the estimation of model parameters by using the maximum likelihood method (MLEs). We also derive expressions for the elements of the Fisher information matrix. Next, we demonstrate the usefulness of the proposed model by fitting it to a real data set. Finally, we draw some concluding remarks.


Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 5931-5947
Author(s):  
Hatami Mojtaba ◽  
Alamatsaz Hossein

In this paper, we propose a new transformation of circular random variables based on circular distribution functions, which we shall call inverse distribution function (id f ) transformation. We show that M?bius transformation is a special case of our id f transformation. Very general results are provided for the properties of the proposed family of id f transformations, including their trigonometric moments, maximum entropy, random variate generation, finite mixture and modality properties. In particular, we shall focus our attention on a subfamily of the general family when id f transformation is based on the cardioid circular distribution function. Modality and shape properties are investigated for this subfamily. In addition, we obtain further statistical properties for the resulting distribution by applying the id f transformation to a random variable following a von Mises distribution. In fact, we shall introduce the Cardioid-von Mises (CvM) distribution and estimate its parameters by the maximum likelihood method. Finally, an application of CvM family and its inferential methods are illustrated using a real data set containing times of gun crimes in Pittsburgh, Pennsylvania.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


Sign in / Sign up

Export Citation Format

Share Document