Investigation and optimization of textured thrust bearings with spirally distributed dimples using multi-objective optimization method

2020 ◽  
Vol 72 (6) ◽  
pp. 749-759
Author(s):  
Qiang Li ◽  
Yujun Wang ◽  
Shuo Zhang ◽  
Wei-Wei Xu ◽  
Lu Bai ◽  
...  

Purpose Surface textures have been widely used in thrust bearings as a means of enhancing the tribological performance. The effect of textures with a spiral distribution on the lubrication characteristics of thrust bearings has not been fully covered. This paper aims to investigate and find the optimal structure and distribution parameters of textures with the maximum loading capacity and minimum friction force as goals. Design/methodology/approach Combining the multi-objective optimization method based on the non-dominated sorted genetic algorithm-II with response surface methodology, the key textured parameters are optimized. Local sensitivity analysis is used to evaluate the impact level of each parameter. Findings Spiral distribution of textures can effectively improve the lubrication performance of the thrust bearing compared with the linear distribution. The distribution with high amplitudes and high cycle numbers will weaken the spiral effect and destroy the high-pressure region. Through the multi-objective optimization of the textured structure and distribution parameters, the loading capacity demonstrates a 55.05per cent improvement compared to the basic model. Textured width is the most sensitive parameter for both loading capacity and friction force. Originality/value Present research provides a fundamental design guide for textured thrust bearings.

2019 ◽  
Vol 26 (7) ◽  
pp. 1294-1320 ◽  
Author(s):  
Tarek Salama ◽  
Osama Moselhi

Purpose The purpose of this paper is to present a newly developed multi-objective optimization method for the time, cost and work interruptions for repetitive scheduling while considering uncertainties associated with different input parameters. Design/methodology/approach The design of the developed method is based on integrating six modules: uncertainty and defuzzification module using fuzzy set theory, schedule calculations module using the integration of linear scheduling method (LSM) and critical chain project management (CCPM), cost calculations module that considers direct and indirect costs, delay penalty, and work interruptions cost, multi-objective optimization module using Evolver © 7.5.2 as a genetic algorithm (GA) software, module for identifying multiple critical sequences and schedule buffers, and reporting module. Findings For duration optimization that utilizes fuzzy inputs without interruptions or adding buffers, duration and cost generated by the developed method are found to be 90 and 99 percent of those reported in the literature, respectively. For cost optimization that utilizes fuzzy inputs without interruptions, project duration generated by the developed method is found to be 93 percent of that reported in the literature after adding buffers. The developed method accelerates the generation of optimum schedules. Originality/value Unlike methods reported in the literature, the proposed method is the first multi-objective optimization method that integrates LSM and the CCPM. This method considers uncertainties of productivity rates, quantities and availability of resources while utilizing multi-objective GA function to minimize project duration, cost and work interruptions simultaneously. Schedule buffers are assigned whether optimized schedule allows for interruptions or not. This method considers delay and work interruption penalties, and bonus payments.


Author(s):  
Carmen Delgado ◽  
José Antonio Domínguez-Navarro

Purpose – Renewable generation is a main component of most hybrid generation systems. However, randomness on its generation is a characteristic to be considered due to its direct impact on reliability and performance of these systems. For this reason, renewable generation usually is accompanied with other generation elements to improve their general performance. The purpose of this paper is to analyze the power generation system, composed of solar, wind and diesel generation and power outsourcing option from the grid as means of reserve source. A multi-objective optimization for the design of hybrid generation system is proposed, particularly using the cost of energy, two different reliability indexes and the percentage of renewable energy as objectives. Further, the uncertainty of renewable sources and demand is modeled with a new technique that permits to evaluate the reliability quickly. Design/methodology/approach – The multi-state model of the generators and the load is modeled with the Universal Generating Function (UGF) to estimate the reliability indexes for the whole system. Then an evolutionary algorithm NSGA-II (Non-dominated Sorting Genetic Algorithm) is used to solve the multi-objective optimization model. Findings – The use of UGF methodology reduces the computation time, providing effective results. The validation of reliability assessment of hybrid generation systems using the UGF is carried out taking as a benchmark the results obtained with the Monte Carlo simulation. The proposed multi-objective algorithm gives as a result different generators combinations that outline hybrid systems, where some of them could be preferred over others depending on its results for each independent objective. Also it allows us to observe the changes produced on the resulting solutions due to the impact of the power fluctuation of the renewable generators. Originality/value – The main contributions of this paper are: an extended multi state model that includes different types of renewable energies, with emphasis on modeling of solar energy; demonstrate the performance improvement of UGF against SMC regarding the computational time required for this case; test the impact of different multi-states numbers for the representation of the elements; depict through multi-objective optimization, the impact of combining different energies on the cost and reliability of the resultant systems.


2019 ◽  
Vol 17 (1) ◽  
pp. 2-24
Author(s):  
Masatoshi Muramatsu ◽  
Takeo Kato

PurposeThe purpose of this paper is to propose the selection guide of the multi-objective optimization methods for the ergonomic design. The proposed guide enables designers to select an appropriate method for optimizing the human characteristics composed of the engineering characteristics (e.g. users’ height, weight and muscular strength) and the physiological characteristics (e.g. brain wave, pulse-beat and myoelectric signal) in the trade-off relationships.Design/methodology/approachThis paper focuses on the types of the relationships between engineering or physiological characteristics and their psychological characteristics (e.g. comfort and usability). Using these relationships and the characteristics of the multi-objective optimization methods, this paper classified them and constructed a flow chart for selecting them.FindingsThis paper applied the proposed selection guide to a geometric design of a comfortable seat and confirmed its applicability. The selected multi-objective optimization method optimized the contact area of seat back (engineering characteristic associated with the comfortable fit of the seat backrest) and the blood flow volume (physiological characteristic associated with the numbness in the lower limb) on the basis of each design intent such as a deep-vein thrombosis after long flight.Originality/valueBecause of the lack of the selection guide of the multi-objective optimization methods, an inappropriate method is often applied in industry. This paper proposed the selection guide applied in the ergonomic design having a lot of the multi-objective optimization problem.


2018 ◽  
Author(s):  
Rivalri Kristianto Hondro ◽  
Mesran Mesran ◽  
Andysah Putera Utama Siahaan

Procurement selection process in the acceptance of prospective students is an initial step undertaken by private universities to attract superior students. However, sometimes this selection process is just a procedural process that is commonly done by universities without grouping prospective students from superior students into a class that is superior compared to other classes. To process the selection results can be done using the help of computer systems, known as decision support systems. To produce a better, accurate and objective decision result is used a method that can be applied in decision support systems. Multi-Objective Optimization Method by Ratio Analysis (MOORA) is one of the MADM methods that can perform calculations on the value of criteria of attributes (prospective students) that helps decision makers to produce the right decision in the form of students who enter into the category of prospective students superior.


Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 38
Author(s):  
Amr Mohamed AbdelAziz ◽  
Louai Alarabi ◽  
Saleh Basalamah ◽  
Abdeltawab Hendawi

The wide spread of Covid-19 has led to infecting a huge number of patients, simultaneously. This resulted in a massive number of requests for medical care, at the same time. During the first wave of Covid-19, many people were not able to get admitted to appropriate hospitals because of the immense number of patients. Admitting patients to suitable hospitals can decrease the in-bed time of patients, which can lead to saving many lives. Also, optimizing the admission process can minimize the waiting time for medical care, which can save the lives of severe cases. The admission process needs to consider two main criteria: the admission time and the readiness of the hospital that will accept the patients. These two objectives convert the admission problem into a Multi-Objective Problem (MOP). Pareto Optimization (PO) is a common multi-objective optimization method that has been applied to different MOPs and showed its ability to solve them. In this paper, a PO-based algorithm is proposed to deal with admitting Covid-19 patients to hospitals. The method uses PO to vary among hospitals to choose the most suitable hospital for the patient with the least admission time. The method also considers patients with severe cases by admitting them to hospitals with the least admission time regardless of their readiness. The method has been tested over a real-life dataset that consisted of 254 patients obtained from King Faisal specialist hospital in Saudi Arabia. The method was compared with the lexicographic multi-objective optimization method regarding admission time and accuracy. The proposed method showed its superiority over the lexicographic method regarding the two criteria, which makes it a good candidate for real-life admission systems.


Sign in / Sign up

Export Citation Format

Share Document