A multi-objective model for sustainable closed-loop supply chain of perishable products under two carbon emission regulations

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saman Esmaeilian ◽  
Dariush Mohamadi ◽  
Majid Esmaelian ◽  
Mostafa Ebrahimpour

Purpose This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits. Design/methodology/approach The present study develops a mathematical model for a closed-loop supply chain network of perishable products so that considers the vital aspects of sustainability across the life cycle of the supply chain network. To evaluate carbon emissions, two different regulating policies are studied. Findings According to the obtained results, increasing the lifetime of the perishable products improves the incorporated objective function (IOF) in both the carbon cap-and-trade model and the model with a strict cap on carbon emission while the solving time increases in both models. Moreover, the computational efficiency of the carbon cap-and-trade model is higher than that of the model with a strict cap, but its value of the IOF is worse. Results indicate that efficient policies for carbon management will support planners to achieve sustainability in a cost-effectively manner. Originality/value This research proposes a mathematical model for the sustainable closed-loop supply chain of perishable products that applies the significant aspects of sustainability across the life cycle of the supply chain network. Regional economic value, regional development, unemployment rate and the number of job opportunities created in the regions are considered as the social dimension.

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Guitao Zhang ◽  
Hao Sun ◽  
Jinsong Hu ◽  
Gengxin Dai

This paper studies a closed-loop supply chain network equilibrium problem in multiperiod planning horizons with consideration of product lifetime and carbon emission constraints. The closed-loop supply chain network consists of suppliers tier, manufacturer tier, retailers tier, and demand markets tier, in which the manufacturers collect used products from the demand markets directly. Product lifetime is introduced to denote the maximum times of manufacturing and remanufacturing, and the relation between adjacent periods is described by inventory transfer. By variational inequalities and complementary theory, the optimal behaviors of all the players are modeled, and, in turn, the governing closed-loop supply chain network equilibrium model is established. The model is solved by modified project contraction algorithm with fixed step. Optimal equilibrium results are computed and analyzed through numerical examples. The impacts of collection rate, remanufacturing conversion rate, product lifetime, and carbon emission cap on equilibrium states are analyzed. Finally, several managerial insights are given to provide decision support for entrepreneurs and government official along with some inspirations for future research.


Author(s):  
Omid - Solgi ◽  
Alireza - Taromi ◽  
jafar ghidar kheljani ◽  
Ehsan - Dehghani

The development of technology, the globalization of the economy, and the unpredictable behavior of customers have led to a dynamic and competitive environment in the Complex Product Systems (CoPS) market. Besides, CoPS economic pricing is one of the key factors that significantly reduces production costs of Complex products and systems  ​​and increases competitiveness . In this regard, this paper develops a hybrid data envelopment analysis (DEA) fuzzy mathematical model for economic pricing of CoPS in a competitive closed-loop supply chain network under uncertainty, which leads to productivity and reducing the costs. To achieve the aim of this study, at first, different CoPS providers were evaluated using DEA based on a set of economic, technical, and geographical criteria . The advantage of this evaluation was choosing the right providers, eliminating inappropriate providers, and reducing complexity as one of the fundamental problems in mathematical models. Next, we maximize the benefit of the supply chain using the mathematical model. The objective of the proposed model is to identify strategic and tactical decisions at the same time to provide a fully optimal solution to the model. Furthermore, the presented robust model is capable of providing a stable structure under different uncertainties. This leads to minimizing the purchasing cost of CoPS manufacturers. Eventually, to evaluate the effectiveness and usefulness of the proposed approach, a case study was used to derive important managerial results .


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Na Wang ◽  
Yulin Zhang ◽  
Jing Li

PurposeOutsourcing remanufacturing is a major form of remanufacturing, and emission reduction is an important part of a manufacturer's production. This paper aims to investigate carbon emission reduction strategies in a closed-loop supply chain (CLSC) with outsourcing remanufacturing and design a contract to coordinate the CLSC.Design/methodology/approachThe authors establish two-period game models between an original equipment manufacturer (OEM) and third-party remanufacturer (TPR) in different scenarios, including decentralized decision, centralized decision and coordinated decision. Furthermore, the authors study the optimal decisions by maximizing the profit model. The authors also investigate the impact of a carbon tax and emission reduction on the optimal decisions through comparative analysis.FindingsEmission reduction increases the quantity of new products and the OEM's profit. However, emission reduction decreases the outsourcing fee, which is not conducive to remanufacturing; thus, the TPR's profit does not necessarily increase. Compared with a decentralized scenario, the output of remanufactured products and the total profit increase. When the acceptance level of remanufactured products is high enough or when emissions from remanufacturing are low enough, the total carbon emissions are reduced in the centralized scenario. For the coordination of the CLSC, the OEM needs to increase the outsourcing fee and the TPR needs to share part of the emission reduction costs.Research limitations/implicationsThe TPR can choose three different remanufacturing strategies, namely, no remanufacturing, partial remanufacturing or full remanufacturing. For the majority of firms, it is difficult to remanufacture all used products. Therefore, the analysis is based only on partial remanufacturing.Practical implicationsThe results provide insights for remanufacturing and emission reduction decisions, as well as a decision basis for the cooperation between the OEM and TPR.Originality/valueThe authors combine the OEM's carbon emission reduction with outsourcing remanufacturing, and investigate the impact of technological spillover on the TPR's profit.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Prem Chhetri ◽  
Mahsa Javan Nikkhah ◽  
Hamed Soleimani ◽  
Shahrooz Shahparvari ◽  
Ashkan Shamlou

PurposeThis paper designs an optimal closed-loop supply chain network with an integrated forward and reverse logistics to examine the possibility of remanufacturing end-of-life (EoL) ships.Design/methodology/approachExplanatory variables are used to estimate the number of EoL ships available in a closed-loop supply chain network. The estimated number of EoL ships is used as an input in the model and then it is solved by a mixed-integer linear programming (MILP) model of the closed-loop supply chain network to minimise the total logistic costs. A discounted payback period formula is developed to calculate the length of time to recoup an investment based on the investment's discounted cash flows. Existing ship wrecking industry clusters in the Western region of India are used as the case study to apply the proposed model.FindingsThe MILP model has optimised the total logistics costs of the closed-loop supply network and ascertained the optimal number and location of remanufacturing for building EoL ships. The capital and variable costs required for establishing and operating remanufacturing centres are computed. To remanufacture 30 ships a year, the discounted payback period of this project is estimated to be less than two years.Practical implicationsShip manufacturing businesses are yet to re-manufacture EoL ships, given high upfront capital expenditure and operational challenges. This study provides management insights into the costs and benefits of EoL ship remanufacturing; thus, informing the decision-makers to make strategic operational decisions.Originality/valueThe design of an optimal close loop supply chain network coupled with a Bayesian network approach and discounted payback period formula for the collection and remanufacturing of EoL ships provides a new integrated perspective to ship manufacturing.


2017 ◽  
Vol 12 (3) ◽  
pp. 551-574 ◽  
Author(s):  
Surya Prakash ◽  
Gunjan Soni ◽  
Ajay Pal Singh Rathore

Purpose The purpose of this paper is to assist a manufacturing firm in designing the closed-loop supply chain network under risks that are affecting its supply quality and logistics operations. The modeling approach adopted aims at the embedding supply chain risks in a closed-loop supply chain (CLSC) network design process and suggests optimal supply chain configuration and risk mitigation strategies. Design/methodology/approach The method proposes a closed-loop supply chain network and identifies the network parameter and variables required for closing the loop. Mixed-integer-linear-programming-based mathematical modeling approach is used to formulate the research problem. The solutions and test results are obtained from CPLEX solver. Findings The outcomes of the proposed model were demonstrated through a case study conducted in an Indian hospital furniture manufacturing firm. The modern supply chain is mapped to make it closed loop, and potential risks in its supply chain are identified. The supply chain network of the firm is redesigned through embedding risk in the modeling process. It was found that companies can be in great profit if they follow closed-loop practices and simultaneously keep a check on risks as well. The cost of making the supply chain risk averse was found to be insignificant. Practical implications Although the study was conducted in a practical case situation, the obtained results are not indiscriminate to the other circumstances. However, the approach followed and proposed methodology can be applied to many industries once a firm decides to redesign its supply chain for closing its loop or model under risks. Originality/value By using the identified CLSC parameters and applying the proposed network design methodology, a firm can design/redesign their supply chain network to counter the risk and accordingly come up with planned mitigation strategies to achieve a certain degree of robustness.


2015 ◽  
Vol 104 ◽  
pp. 354-365 ◽  
Author(s):  
Zhang Gui Tao ◽  
Zhong Yong Guang ◽  
Sun Hao ◽  
Hu Jin Song ◽  
Dai Geng Xin

Sign in / Sign up

Export Citation Format

Share Document