Carbon emission reduction and coordination in a closed-loop supply chain with outsourcing remanufacturing

Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Na Wang ◽  
Yulin Zhang ◽  
Jing Li

PurposeOutsourcing remanufacturing is a major form of remanufacturing, and emission reduction is an important part of a manufacturer's production. This paper aims to investigate carbon emission reduction strategies in a closed-loop supply chain (CLSC) with outsourcing remanufacturing and design a contract to coordinate the CLSC.Design/methodology/approachThe authors establish two-period game models between an original equipment manufacturer (OEM) and third-party remanufacturer (TPR) in different scenarios, including decentralized decision, centralized decision and coordinated decision. Furthermore, the authors study the optimal decisions by maximizing the profit model. The authors also investigate the impact of a carbon tax and emission reduction on the optimal decisions through comparative analysis.FindingsEmission reduction increases the quantity of new products and the OEM's profit. However, emission reduction decreases the outsourcing fee, which is not conducive to remanufacturing; thus, the TPR's profit does not necessarily increase. Compared with a decentralized scenario, the output of remanufactured products and the total profit increase. When the acceptance level of remanufactured products is high enough or when emissions from remanufacturing are low enough, the total carbon emissions are reduced in the centralized scenario. For the coordination of the CLSC, the OEM needs to increase the outsourcing fee and the TPR needs to share part of the emission reduction costs.Research limitations/implicationsThe TPR can choose three different remanufacturing strategies, namely, no remanufacturing, partial remanufacturing or full remanufacturing. For the majority of firms, it is difficult to remanufacture all used products. Therefore, the analysis is based only on partial remanufacturing.Practical implicationsThe results provide insights for remanufacturing and emission reduction decisions, as well as a decision basis for the cooperation between the OEM and TPR.Originality/valueThe authors combine the OEM's carbon emission reduction with outsourcing remanufacturing, and investigate the impact of technological spillover on the TPR's profit.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guangzhou Yan ◽  
Qinyu Song ◽  
Yaodong Ni ◽  
Xiangfeng Yang

<p style='text-indent:20px;'>This paper studies the pricing and recycling decision problems in a closed-loop supply chain (CLSC) containing a manufacturer, a downstream retailer, and a third-party recycling left. The manufacturer is subjected to the cap-and-trade regulation and determines the wholesale price of products and carbon emission reduction rate. The retailer determines its resale price to meet customer demands. The third-party recycling left determines the collection rate of recycling and remanufacturing used products. The new product demands, total carbon emissions, and recovery of these products are characterized as uncertain variables due to lack of historical data or insufficient data collected for research. By constructing three decentralized game models, we explore the equilibrium solutions under the corresponding decision-making situation and the corresponding analytical solutions. Finally, numerical experiments are performed to show the total profit of supply chain members for each structure and some special insights are drawn.</p>


2021 ◽  
Vol 13 (11) ◽  
pp. 6425
Author(s):  
Quanxi Li ◽  
Haowei Zhang ◽  
Kailing Liu

In closed-loop supply chains (CLSC), manufacturers, retailers, and recyclers perform their duties. Due to the asymmetry of information among enterprises, it is difficult for them to maximize efficiency and profits. To maximize the efficiency and profit of the CLSC, this study establishes five cooperation models of CLSC under the government‘s reward–penalty mechanism. We make decisions on wholesale prices, retail prices, transfer payment prices, and recovery rates relying on the Stackelberg game method and compare the optimal decisions. This paper analyzes the impact of the government reward-penalty mechanism on optimal decisions and how members in CLSC choose partners. We find that the government’s reward-penalty mechanism can effectively increase the recycling rate of used products and the total profit of the closed-loop supply chain. According to the calculation results of the models, under the government’s reward-penalty mechanism, the cooperation can improve the CLSC’s used products recycling capacity and profitability. In a supply chain, the more members participate in the cooperation, the higher profit the CLSC obtain. However, the cooperation mode of all members may lead to monopoly, which is not approved by government and customers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saman Esmaeilian ◽  
Dariush Mohamadi ◽  
Majid Esmaelian ◽  
Mostafa Ebrahimpour

Purpose This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits. Design/methodology/approach The present study develops a mathematical model for a closed-loop supply chain network of perishable products so that considers the vital aspects of sustainability across the life cycle of the supply chain network. To evaluate carbon emissions, two different regulating policies are studied. Findings According to the obtained results, increasing the lifetime of the perishable products improves the incorporated objective function (IOF) in both the carbon cap-and-trade model and the model with a strict cap on carbon emission while the solving time increases in both models. Moreover, the computational efficiency of the carbon cap-and-trade model is higher than that of the model with a strict cap, but its value of the IOF is worse. Results indicate that efficient policies for carbon management will support planners to achieve sustainability in a cost-effectively manner. Originality/value This research proposes a mathematical model for the sustainable closed-loop supply chain of perishable products that applies the significant aspects of sustainability across the life cycle of the supply chain network. Regional economic value, regional development, unemployment rate and the number of job opportunities created in the regions are considered as the social dimension.


Sign in / Sign up

Export Citation Format

Share Document