A partner selection model for collaborative product innovation from the viewpoint of knowledge collaboration

Kybernetes ◽  
2019 ◽  
Vol 49 (6) ◽  
pp. 1623-1644 ◽  
Author(s):  
Jie Jian ◽  
Milin Wang ◽  
Lvcheng Li ◽  
Jiafu Su ◽  
Tianxiang Huang

Purpose Selecting suitable and competent partners is an important prerequisite to improve the performance of collaborative product innovation (CPI). The purpose of this paper is to propose an integrated multi-criteria approach and a decision optimization model of partner selection for CPI from the perspective of knowledge collaboration. Design/methodology/approach First, the criteria for partner selection are presented, considering comprehensively the knowledge matching degree of the candidates, the knowledge collaborative performance among the candidates, and the overall expected revenue of the CPI alliance. Then, a quantitative method based on the vector space model and the synergetic matrix method is proposed to obtain a comprehensive performance of candidates. Furthermore, a multi-objective optimization model is developed to select desirable partners. Considering the model is a NP-hard problem, a non-dominated sorting genetic algorithm II is developed to solve the multi-objective optimization model of partner selection. Findings A real case is analyzed to verify the feasibility and validity of the proposed model. The findings show that the proposed model can efficiently select excellent partners with the desired comprehensive attributes for the formation of a CPI alliance. Originality/value Theoretically, a novel method and approach to partner selection for CPI alliances from a knowledge collaboration perspective is proposed in this study. In practice, this paper also provides companies with a decision support and reference for partner selection in CPI alliances establishment.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Mahdi Ershadi ◽  
Hossein Shams Shemirani

PurposeProper planning for the response phase of humanitarian relief can significantly prevent many financial and human losses. To this aim, a multi-objective optimization model is proposed in this paper that considers different types of injured people, different vehicles with determining capacities and multi-period logistic planning. This model can be updated based on new information about resources and newly identified injured people.Design/methodology/approachThe main objective function of the proposed model in this paper is minimizing the unsatisfied prioritized injured people in the network. Besides, the total transportation activities of different types of vehicles are considered as another objective function. Therefore, these objectives are optimized hierarchically in the proposed model using the Lexicographic method. This method finds the best value for the first objective function. Then, it tries to optimize transportation activities as the second objective function while maintaining the optimality of the first objective function.FindingsThe performances of the proposed model were analyzed in different cases and its robust approach for different problems was shown within the framework of a case study. Besides, the sensitivity analysis of results shows the logical behavior of the proposed model against various factors.Practical implicationsThe proposed methodology can be applied to find the best response plan for all crises.Originality/valueIn this paper, we have tried to use a multi-objective optimization model to guide and correct response programs to deal with the occurred crisis. This is important because it can help emergency managers to improve their plans.


2018 ◽  
Vol 27 (4) ◽  
pp. 577-591 ◽  
Author(s):  
Jiafu Su ◽  
Yu Yang ◽  
Kunpeng Yu ◽  
Na Zhang

Abstract Partner selection is the primary aspect of the formation of knowledge collaboration teams (KCTs). We propose a method of partner selection for KCTs based on a weighted social network analysis (SNA) method in which the individual knowledge competence and the collaboration performance of candidates are both considered. To select the desired partners, a biobjective 0-1 model is built, integrating the knowledge competence and collaboration performance, which is an NP-hard problem. Then, a multiobjective genetic algorithm (MOGA) is developed to solve the proposed model. Finally, a real-world example is provided to illustrate the applicability of the model, and the MOGA is implemented to search for Pareto solutions of partner selection for KCT in this case. Moreover, some simulation examples are used to test the efficiency of the algorithm. The results suggest that the proposed method can support effective and practical partner selection.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Mahdi Ershadi ◽  
Mohamad Sajad Ershadi

Purpose Appropriate logistic planning for the pharmaceutical supply chain can significantly improve many financial and performance aspects. To this aim, a multi-objective optimization model is proposed in this paper that considers different types of pharmaceuticals, different vehicles with determining capacities and multi-period logistic planning. This model can be updated based on new information about resources and newly identified requests. Design/methodology/approach The main objective function of the proposed model in this paper is minimizing the unsatisfied prioritized requests for pharmaceuticals in the network. Besides, the total transportation activities of different types of vehicles and related costs are considered as other objectives. Therefore, these objectives are optimized hierarchically in the proposed model using the Lexicographic method. This method finds the best value for the first objective function. Then, it tries to optimize the second objective function while maintaining the optimality of the first objective function. The third objective function is optimized based on the optimality of other objective functions, as well. A non-dominated sorting genetic algorithm II-multi-objective particle swarm optimization heuristic method is designed for this aim. Findings The performances of the proposed model were analyzed in different cases and its results for different problems were shown within the framework of a case study. Besides, the sensitivity analysis of results shows the logical behavior of the proposed model against various factors. Practical implications The proposed methodology can be applied to find the best logistic plan in real situations. Originality/value In this paper, the authors have tried to use a multi-objective optimization model to guide and correct the pharmaceutical supply chain to deal with the related requests. This is important because it can help managers to improve their plans.


2020 ◽  
Vol 12 (21) ◽  
pp. 8833
Author(s):  
Wei Wang ◽  
Zhentian Sun ◽  
Zhiyuan Wang ◽  
Yue Liu ◽  
Jun Chen

In order to reduce the pressure on urban road traffic, multi-modal travel is gradually replacing single-modal travel. Park and ride (P + R) and kiss and ride (K + R) are effective methods to integrate car transportation and rail transit. However, there is often an imbalance between supply and demand in existing car occupant transfer facilities, which include both P + R and K + R facilities. Therefore, we aim to conduct a research on P + R and K + R facilities’ collaborative decision. It first classifies car occupant transfer facilities into types and levels and sets the service capacity of each category. On the premise of ensuring the occupancy of parking spaces, our model aims to maximize the intercepted vehicle mileage and transfer utility and establishes an optimal decision model for car occupant transfer facilities. The model collaboratively decides the facilities in terms of location selection, layout arrangement, and overflow demand conversion to balance the supply and demand. We choose Chengdu as an example, apply the multi-objective optimization model of car occupant transfer facilities, give improved schemes, and further explore the influence of the quantity of facilities on the optimization objectives. The results show that the scheme obtained by the proposed model is significantly better than the existing scheme.


2019 ◽  
Vol 11 (24) ◽  
pp. 6969 ◽  
Author(s):  
Jianhua Cao ◽  
Xuhui Xia ◽  
Lei Wang ◽  
Zelin Zhang ◽  
Xiang Liu

Disassembly is an indispensable part in remanufacturing process. Disassembly line balancing and disassembly mode have direct effects on the disassembly efficiency and resource utilization. Recent researches about disassembly line balancing problem (DLBP) either considered the highest productivity, lowest disassembly cost or some other performance measures. No one has considered these metrics comprehensively. In practical production, ignoring the ratio of resource input and value output within remanufacturing oriented disassembly can result in inefficient or pointless remanufacturing operations. To address the problem, a novel multi-efficiency DLBP optimization method is proposed. Different from the conventional DLBP, destructive disassembly mode is considered not only on un-detachable parts, but also on detachable parts with low value, high energy consumption, and long task time. The time efficiency, energy efficiency, and value efficiency are newly defined as the ultimate optimization objectives. For the characteristics of the multi-objective optimization model, a dual-population discrete artificial bee colony algorithm is proposed. The proposed model and algorithm are validated by different scales examples and applied to an automotive engine disassembly line. The results show that the proposed model is more efficient, and the algorithm is well suited to the multi-objective optimization model.


Kybernetes ◽  
2018 ◽  
Vol 47 (1) ◽  
pp. 20-43 ◽  
Author(s):  
Wu Deng ◽  
Meng Sun ◽  
Huimin Zhao ◽  
Bo Li ◽  
Chunxiao Wang

Purpose This study aims to propose a new airport gate assignment method to effectively improve the comprehensive operation capacity and efficiency of hub airport. Gate assignment is one of the most important tasks for airport ground operations, which assigns appropriate airport gates with high efficiency reasonable arrangement. Design/methodology/approach In this paper, on the basis of analyzing the characteristics of airport gates and flights, an efficient multi-objective optimization model of airport gate assignment based on the objectives of the most balanced idle time, the shortest walking distances of passengers and the least number of flights at apron is constructed. Then an improved ant colony optimization (ICQACO) algorithm based on the ant colony collaborative strategy and pheromone update strategy is designed to solve the constructed model to fast realize the gate assignment and obtain a rational and effective gate assignment result for all flights in the different period. Findings In the designed ICQACO algorithm, the ant colony collaborative strategy is used to avoid the rapid convergence to the local optimal solution, and the pheromone update strategy is used to quickly increase the pheromone amount, eliminate the interference of the poor path and greatly accelerate the convergence speed. Practical implications The actual flight data from Guangzhou Baiyun airport of China is selected to verify the feasibility and effectiveness of the constructed multi-objective optimization model and the designed ICQACO algorithm. The experimental results show that the designed ICQACO algorithm can increase the pheromone amount, accelerate the convergence speed and avoid to fall into the local optimal solution. The constructed multi-objective optimization model can effectively improve the comprehensive operation capacity and efficiency. This study is a very meaningful work for airport gate assignment. Originality/value An efficient multi-objective optimization model for hub airport gate assignment problem is proposed in this paper. An improved ant colony optimization algorithm based on ant colony collaborative strategy and the pheromone update strategy is deeply studied to speed up the convergence and avoid to fall into the local optimal solution.


2012 ◽  
Vol 201-202 ◽  
pp. 971-974
Author(s):  
Fang Qi Cheng ◽  
Hao Wu

For realizing the sharing and optimization deployment of the manufacturing resources, the concept of collaborative manufacturing chain is proposed. For acquiring the optimal collaborative manufacturing chain, a multi-objective optimization model is developed to minimize the comprehensive cost and the whole production load with time-sequence constraint. The simulation results indicate that the proposed model and algorithm are able to obtain satisfactory solutions.


Sign in / Sign up

Export Citation Format

Share Document