A secure anonymous tracing fog-assisted method for the Internet of Robotic Things

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdulrahman Alamer

PurposeEmploying a fog computing (FC) network system in the robotic network system is an effective solution to support robotic application issues. The interconnection between robotic devices through an FC network can be referred as the Internet of Robotic Things (IoRT). Although the FC network system can provide number of services closer to IoRT devices, it still faces significant challenges including real-time tracing services and a secure tracing services. Therefore, this paper aims to provide a tracking mobile robot devices in a secure and private manner, with high efficiency performance, is considered essential to ensuring the success of IoRT network applications.Design/methodology/approachThis paper proposes a secure anonymous tracing (SAT) method to support the tracing of IoRT devices through a FC network system based on the Counting Bloom filter (CBF) and elliptic curve cryptography techniques. With the proposed SAT mechanism, a fog node can trace a particular robot device in a secure manner, which means that the fog node can provide a service to a particular robot device without revealing any private data such as the device's identity or location.FindingsAnalysis shows that the SAT mechanism is both efficient and resilient against tracing attacks. Simulation results are provided to show that the proposed mechanism is beneficial to support IoRT applications over an FC network system.Originality/valueThis paper represents a SAT method based on CBF and elliptic curve cryptography techniques as an efficient mechanism that is resilient against tracing attacks.

Author(s):  
Pooja Verma

Integration procedures are employed to increase and enhance computing networks and their application domain. Extensive studies towards the integration of MANET with the internet have been studied and worked towards addressing various challenges for such integration. Some idyllic mechanisms always fail due to the presence of some nasty node or other problems such as face alteration and eavesdropping. The focus of this chapter is on the design and discovery of secure gateway scheme in MANET employing trust-based security factors such as route trust and load ability. Over these, the elliptic curve cryptography is applied to achieve confidentiality, integrity, and authentication while selecting optimum gateway node that has less bandwidth, key storage space, and faster computational time. Simulation results of the security protocol through SPAN for AVISPA tool have shown encouraging results over two model checkers namely OFMC and CL-AtSe.


2020 ◽  
Vol 17 (1) ◽  
pp. 402-408
Author(s):  
Soram Ranbir Singh ◽  
Khan Kumar Ajoy

The Internet of Things (IoT) has ushered in numerous devices in many areas in our life and in industries. It could comprise devices with sensors to gather and broadcast data over the internet. As the devices are IP-based and the media are shared, any user in the network can have an access to the communication contents. The only way to impose access control in the sensor networks is through cryptography. A key is applied to encrypt the communication to prevent from unauthorized access to the network. Choosing a suitable key management scheme is very important in sensor networks as it should satisfy the constraints of the sensors. There are two indispensable public cryptosystems available in the literatures-RSA and Elliptic curve cryptography (ECC). ECC gives strong resistance to cryptanalytic attacks. So, it is used with smaller key sizes than RSA (Valenta, L., et al., 2018. In Search of CurveSwap: Measuring Elliptic Curve Implementations in the Wild. 2018 IEEE European Symposium on Security and Privacy (EuroS&P), April; IEEE. pp.384–398). The most prettiness of using elliptic curve cryptography over other cryptosystems (i.e., RSA) is that it provides same security strength for a lesser key without breaching the system, thereby consuming less resources and ameliorating performances and fast data throughput of the devices. To choose a suitable public cryptosystem for use in IoT devices like sensor networks, elliptic curve cryptography and RSA are comparatively analyzed in this paper.


2019 ◽  
Vol 15 (1) ◽  
pp. 155014771982582 ◽  
Author(s):  
Razi Iqbal ◽  
Talal Ashraf Butt ◽  
Muhammad Afzaal ◽  
Khaled Salah

The Internet of things is the next stage in the evolution of the Internet that is being materialized with the integration of billions of smart objects. The state-of-the-art communication technologies have enabled the previously isolated devices to become an active part of the Internet. This constant connectivity opens new avenues for novel applications such as the realization of social Internet of things and its subdomain the social Internet of vehicles. Socializing requires sharing of information that entails trust, especially in an open and broad social environment. This article highlights the key factors involved in conceptualizing an efficient trust model for social Internet of vehicles. Furthermore, it focuses on the unique challenges involved in designing the trust models for social Internet of vehicles. Several trust models exist in literature; however, most of the existing trust models are specific to their domains, for example, Internet of things, social Internet of things, or general vehicular networks. This article presents a brief review of the trust models that have the potential to be implemented in Social Internet of vehicles. Finally, the authors present an overview of how trending concepts and emerging technologies like blockchain and fog computing can assist in developing a trust-based social Internet of vehicles model for high-efficiency, decentralized architecture and dynamic nature of vehicular networks.


Author(s):  
Pooja Verma

Integration procedures are employed to increase and enhance computing networks and their application domain. Extensive studies towards the integration of MANET with the internet have been studied and worked towards addressing various challenges for such integration. Some idyllic mechanisms always fail due to the presence of some nasty node or other problems such as face alteration and eavesdropping. The focus of this chapter is on the design and discovery of secure gateway scheme in MANET employing trust-based security factors such as route trust and load ability. Over these, the elliptic curve cryptography is applied to achieve confidentiality, integrity, and authentication while selecting optimum gateway node that has less bandwidth, key storage space, and faster computational time. Simulation results of the security protocol through SPAN for AVISPA tool have shown encouraging results over two model checkers namely OFMC and CL-AtSe.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiuhong Yu ◽  
Mengfei Wang ◽  
Yu J.H. ◽  
Seyedeh Maryam Arefzadeh

Purpose This paper aims to offer a hybrid genetic algorithm and the ant colony optimization (GA-ACO) algorithm for task mapping and resource management. The paper aims to reduce the makespan and total response time in fog computing- medical cyber-physical system (FC-MCPS). Design/methodology/approach Swift progress in today’s medical technologies has resulted in a new kind of health-care tool and therapy techniques like the MCPS. The MCPS is a smart and reliable mechanism of entrenched clinical equipment applied to check and manage the patients’ physiological condition. However, the extensive-delay connections among cloud data centers and medical devices are so problematic. FC has been introduced to handle these problems. It includes a group of near-user edge tools named fog points that are collaborating until executing the processing tasks, such as running applications, reducing the utilization of a momentous bulk of data and distributing the messages. Task mapping is a challenging problem for managing fog-based MCPS. As mapping is an non-deterministic pol ynomial-time-hard optimization issue, this paper has proposed a procedure depending on the hybrid GA-ACO to solve this problem in FC-MCPS. ACO and GA, that is applied in their standard formulation and combined as hybrid meta-heuristics to solve the problem. As such ACO-GA is a hybrid meta-heuristic using ACO as the main approach and GA as the local search. GA-ACO is a memetic algorithm using GA as the main approach and ACO as local search. Findings MATLAB is used to simulate the proposed method and compare it to the ACO and MACO algorithms. The experimental results have validated the improvement in makespan, which makes the method a suitable one for use in medical and real-time systems. Research limitations/implications The proposed method can achieve task mapping in FC-MCPS by attaining high efficiency, which is very significant in practice. Practical implications The proposed approach can achieve the goal of task scheduling in FC-MCPS by attaining the highest total computational efficiency, which is very significant in practice. Originality/value This research proposes a GA-ACO algorithm to solve the task mapping in FC-MCPS. It is the most significant originality of the paper.


Sign in / Sign up

Export Citation Format

Share Document