Efficient Reduction of the Transmission Delay of the Authentication Based Elliptic Curve Cryptography in 6LoWPAN Wireless Sensor Networks in the Internet of Things

Author(s):  
Balkis Bettoumi ◽  
Ridha Bouallegue
Author(s):  
Ye Chen ◽  
Wei Liu ◽  
Tian Wang ◽  
Qingyong Deng ◽  
Anfeng Liu ◽  
...  

AbstractThe Internet of Things (IoT) is the latest Internet development, with billions of Internet-connected devices and a wide range of industrial applications. Wireless sensor networks are an important part of the Internet of Things. It has received extensive attention from researchers due to its large-scale, self-organizing, and dynamic characteristics and has been widely used in industry, traffic information, military, environmental monitoring, and so on. With the development of microprocessor technology, sensor nodes are becoming more and more powerful, which enables the same wireless sensor networks (WSNs) platform to meet the different quality of service (QoS) requirements of many applications. Applications for industrial wireless sensor networks range from lower physical layers to higher application layers. The same wireless sensor network sometimes needs to process information from different layers. Traditional protocols lack differentiated services and cannot make full use of network resources. In this paper, an Adaptive Retransmit Mechanism for Delay Differentiated Services (ARM-DDS) scheme is proposed to meet different levels of delays of applications. Firstly, we analyze the impact of different retransmit mechanisms and parameter optimization on delays and energy consumption. Based on the results of the analysis, in ARM-DDS scheme, for routes with transmission delay tolerance, energy-saving retransmission mechanisms are used, and low-latency retransmission mechanisms are used for latency-sensitive routes. In this way, the data routing delays of different applications are guaranteed within bound and the energy consumption of the network is reduced. What is more, ARM-DDS scheme makes full use of the residual energy of the network and uses a small delay routing retransmit mechanism in the far-sink area to reduce end-to-end delay. Both theoretical analysis and simulation experiments show that under the premise of the same reliability requirements, ARM-DDS scheme reduces data transmission delay 12.1% and improves network energy utilization 28%. Given that the reliability requirements of the data stream are different, the scheme can also extend the network lifetime.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jun Huang ◽  
Liqian Xu ◽  
Cong-cong Xing ◽  
Qiang Duan

The design of wireless sensor networks (WSNs) in the Internet of Things (IoT) faces many new challenges that must be addressed through an optimization of multiple design objectives. Therefore, multiobjective optimization is an important research topic in this field. In this paper, we develop a new efficient multiobjective optimization algorithm based on the chaotic ant swarm (CAS). Unlike the ant colony optimization (ACO) algorithm, CAS takes advantage of both the chaotic behavior of a single ant and the self-organization behavior of the ant colony. We first describe the CAS and its nonlinear dynamic model and then extend it to a multiobjective optimizer. Specifically, we first adopt the concepts of “nondominated sorting” and “crowding distance” to allow the algorithm to obtain the true or near optimum. Next, we redefine the rule of “neighbor” selection for each individual (ant) to enable the algorithm to converge and to distribute the solutions evenly. Also, we collect the current best individuals within each generation and employ the “archive-based” approach to expedite the convergence of the algorithm. The numerical experiments show that the proposed algorithm outperforms two leading algorithms on most well-known test instances in terms of Generational Distance, Error Ratio, and Spacing.


Sign in / Sign up

Export Citation Format

Share Document