Hydrothermal coordination in power systems with large-scale integration of renewable energy sources

2016 ◽  
Vol 27 (3) ◽  
pp. 246-258 ◽  
Author(s):  
Anestis Anastasiadis ◽  
Georgios Kondylis ◽  
Georgios A Vokas ◽  
Panagiotis Papageorgas

Purpose – The purpose of this paper is to examine the feasibility of an ideal power network that combines many different renewable energy technologies such as wind power, concentrated solar power (CSP) and hydroelectric power. This paper emphasizes in finding the benefits arising from hydrothermal coordination compared to the non-regulated integration of the hydroelectric units, as well as the benefits from the integration of wind power and CSP. Design/methodology/approach – Artificial Neural Networks were used to estimate wind power output. As for the CSP system, a three-tier architecture which includes a solar field, a transmission-storage system and a production unit was used. Each one of those separate sections is analyzed and the process is modeled. As for the hydroelectric plant, the knowledge of the water’s flow rated has helped estimating the power output, taking into account the technical restrictions and losses during transmission. Also, the economic dispatch problem was solved by using artificial intelligence methods. Findings – Hydrothermal coordination leads to greater thermal participation reduction and cost reduction than a non-regulated integration of the hydrothermal unit. The latter is independent from the degree of integration of the other renewable sources (wind power, CSP). Originality/value – Hydrothermal coordination in a power system which includes thermal units and CSP for cost and emissions reduction.

2021 ◽  
Author(s):  
Reza Ghaffari

Wind power generation is uncertain and intermittent accentuating variability. Currently in many power systems worldwide, the total generation-load unbalance caused by mismatch between forecast and actual wind power output is handled by automatic governor control and real-time 5-minute balancing markets, which are operated by the independent system operators for maintaining reliable operation of power systems. Mechanisms such as automatic governor control and real-time 5-minute balancing markets are in place to correct the mismatch between the load forecast and the actual load. They are not designed to address increased uncertainty and variability introduced by large-scale wind power or solar power generation expected in the future. Thus, large-scale wind power generation with increased uncertainty and intermittency causing variability poses a techno-economic challenge of sourcing least cost load balancing services (reserve).


2011 ◽  
Vol 187 ◽  
pp. 97-102 ◽  
Author(s):  
Liang Liang ◽  
Jian Lin Li ◽  
Dong Hui

Recently, more and more people realize the importance of environment protection. Electric power generation systems using renewable energy sources have an advantage of no greenhouse effect gas emission. Among all the choices, wind power can offer an economic and environmentally friendly alternative to conventional methods of power supply. As a result, wind energy generation, utilization and its grid penetration in electrical grid is increasing world wide. The wind generated power is always fluctuating due to its time varying nature and causing stability problem. Inserting energy storage system into large scale wind farm to eliminate the fluctuation becomes a solution for developing large scale renewable energy system connected with grid. The topology diagram and control strategy are presented in this paper. According to the simulation result, it could be indicated that embedding energy storage system into wind power system could improve the access friendly and extend system functions. This paper shows that integrating energy storage system into wind power system will build a more reliable and flexible system for power grid.


2019 ◽  
Vol 217 ◽  
pp. 01006
Author(s):  
Irina Kolosok ◽  
Elena Korkina ◽  
Victor Kurbatsky

When planning and managing the present-day and future transformed electric power systems (EPS), such comparatively new properties as flexibility and cyber resilience shall be taken into account along with EPS conventional properties, such as Reliability, Security, Survivability, and Vulnerability. Large-scale introduction of renewable energy sources notably lowers the EPS flexibility. Installation of Energy Storages allows compensation of power production imbalance occurred when using renewable energy sources, which makes the energy system more robust, but lowers its cyber security. The paper considers the main performances and models of Energy Storages, their impact on flexibility and cyber security of electric networks; it also presents the technique for quantifying the flexibility of a network with Energy Storages, and identifies most promising directions of studies in this area.


In India, Electrical Power System is adapted to handle both constant loads and variable loads, also power is generated in two types; one is due to fossil fuels, and another one is due to renewable energy sources. However, renewable energy sources are playing a vital role in the production of clean energy and also useful for the reduction in greenhouse emission. Nevertheless, when there is any additional change in the generation side concerning to input supply, which is due to the uncertainty of nature, can create new challenges for the system operators and utility centers. It is not an easy task for the utility centres and supply operators to integrate variable renewable energy sources with the utility grid. This paper explores an overview of some operational techniques and solutions, which are helpful for high penetration of renewable energy sources such as solar and wind energy. It also explores operation, control management and challenges due to renewable energy when they integrated with the utility grid. By interfacing of renewable energy sources with a utility grid with proper management and control can provide bi-directional communication between suppliers and consumers smartly. The aim of integrating large scale renewable sources from transmission and distribution network into an existing system is to reduce the power quality issues, demand response, forecasting, peak demand, and improve network security, fast scheduling and dispatch, aiming towards smart grid technology for electrical power systems.


2020 ◽  
Vol 209 ◽  
pp. 06022
Author(s):  
Vu Minh Phap ◽  
Doan Van Binh ◽  
Nguyen Hoai Nam ◽  
A. V. Edelev ◽  
M. A. Marchenko

Currently, Vietnam‘s energy source structure is being changed by which renewable energy sources play more important role to meet the electricity demand and reduce greenhouse gas emissions from fossil energy sources. Vietnam’s energy development strategy determines to build some renewable energy centers, of which Ninh Thuan is the first province designated to become a national renewable energy center. This is based on Ninh Thuan’s endowment as a province having the largest renewable energy potential in Vietnam. Development of a large renewable energy center allows power system planners to overcome the mismatch in timescales associated with developing transmission power grid and renewable energy generation. Besides, renewable energy center can facilitate a significant pipeline of large-scale renewable energy and storage projects. However, Ninh Thuan province is far away from the major load centers of Vietnam so the calculation and analysis of economic indicators need to be studied. This paper will present the results of the analysis of economic indicators of major renewable electricity sources in Ninh Thuan (onshore wind power, offshore wind power, solar power) to provide scientific arguments for developing a renewable energy center in Vietnam. Also the paper addresses the problem of the large-scale penetration of renewable energy into the power system of Vietnam. The proposed approach presents the optimization of operational decisions in different power generation technologies as a Markov decision process. It uses a stochastic base model that optimizes a deterministic lookahead model. The first model applies the stochastic search to optimize the operation of power sources. The second model captures hourly variations of renewable energy over a year. The approach helps to find the optimal generation configuration under different market conditions.


Sign in / Sign up

Export Citation Format

Share Document