Low-carbon aims need a new set of energy technologies

Significance This will have significant impact on the greening of the power sector and for new technologies dependent on affordable electricity including electric vehicles and the production of bioenergy and hydrogen. Yet in some cases, progress depends on a breakthrough in carbon capture and storage (CCS). Impacts Renewable energy sectors look likely to emerge from COVID-19 impacts stronger than before. Long-term natural gas demand is at risk if CCS development is delayed or unrealised. Electrification technologies, boosted by cheaper power, may receive enhanced regulatory support.

Significance The extent of their preparedness reflects a combination of willingness and ability. Willingness is evident in government policy and in the public's environmental consciousness and support for government targets and policies. Ability stems from wealth, both public and private, industrial expertise and the capacity to innovate. Impacts North European countries are likely to take a lead in hydrogen and carbon capture and storage technologies. Lower-income European countries will struggle to raise capital to invest in electricity transmission. Those countries able to develop deployable clean energy technologies will be better placed to offset the costs of transition.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
pp. petgeo2020-136
Author(s):  
Quentin Fisher ◽  
Frauke Schaefer ◽  
Ieva Kaminskaite ◽  
David N Dewhurst ◽  
Graham Yielding

Predicting the sealing capacity of faults and caprocks has been a long-standing uncertainty for those involved in the exploration, appraisal and development of petroleum reservoirs. In more recent years, interest in the topic has increased in a wide range of other applications, particularly those related to the decarbonization of our energy supply such as carbon capture and storage (CCS), radioactive waste disposal, geothermal energy production and underground energy storage (e.g. compressed air, hydrogen). Knowledge of how faults impact fluid flow is also important for management of drinking water supplies. To communicate new advances in research in these areas, the EAGE organized the first international conference on Fault and Top Seals in 2003. These conferences have continued to be held at roughly 4 yearly intervals and have brought together scientists from a wide range of disciplines to discuss new research findings and workflows relevant to predicting fault and top seal behaviour, as well as presenting case studies covering both successful and unsuccessful attempts to predict sealing capacity.Thematic collection: This article is part of the Fault and top seals collection available at: https://www.lyellcollection.org/cc/fault-and-top-seals-2019


2002 ◽  
Vol 13 (6) ◽  
pp. 883-900 ◽  
Author(s):  
Clair Gough ◽  
Ian Taylor ◽  
Simon Shackley

Geological and ocean sequestration of carbon dioxide is a potential climate change mitigation option that is currently receiving an increasing level of attention within business, academic and policy communities. This paper presents a preliminary investigation of possible public reaction to the technologies under consideration. Using a focus group approach, we consider the similarities between carbon storage technologies and analogous technologies that have generated strong reactions with the public. Initial results suggest that, in principle, carbon capture and storage may be seen as an acceptable approach as a bridging policy while other options are developed. However, concerns were raised regarding the safety of storage and trust in the ability of the various institutions to oversee the process in the long term. This analysis forms part of an on-going study which will continue to investigate the perceptions of a range of stakeholders.


Sign in / Sign up

Export Citation Format

Share Document