Mechanical behavior of an additively manufactured poly-carbonate specimen: tensile, flexural and mode I fracture properties

2019 ◽  
Vol 26 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Iman Sedighi ◽  
Majid R. Ayatollahi ◽  
Bahador Bahrami ◽  
Marco A. Pérez-Martínez ◽  
Andres A. Garcia-Granada

Purpose The purpose of this paper is to investigate the effect of layer orientation on the tensile, flexural and fracture behavior of additively manufactured (AM) polycarbonate (PC) produced using fused deposition modeling (FDM). Design/methodology/approach An experimental approach is undertaken and a total number of 48 tests are conducted. Two types of tensile specimens are used and their mechanical behavior and fracture surfaces are studied. Also, circular parts with different layer orientations are printed and two semi-circular bending (SCB) samples are extracted from each part. Finally, the results of samples with different build directions are compared to one another to better understand the mechanical behavior of additively manufactured PC. Findings The results demonstrate anisotropy in the tensile, flexural and fracture behavior of the additively manufactured PC parts with the latter being less anisotropic compared to the first two. It is also demonstrated that the anisotropy of the elastic modulus is small and can be neglected. Tensile strength ranges from 40 MPa to 53 MPa. At the end, mode I fracture toughness prediction curves are provided for different directions of the FDM samples. Fracture toughness ranges from 1.93 to 2.37 MPa.mm1/2. Originality/value The SCB specimen, a very suitable geometry for characterizing anisotropic materials, was used to characterize FDM parts for the first time. Also, the fracture properties of the AM PC have not been studied by the researchers in the past. Therefore, fracture toughness prediction curves are presented for this anisotropic material. These curves can be very suitable for designing parts that are going to be produced by 3D printing. Moreover, the effect of the area to perimeter ratio on the tensile properties of the printed parts is investigated.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Iman Sedighi ◽  
Majid R. Ayatollahi ◽  
Bahador Bahrami ◽  
Marco A. Pérez-Martínez ◽  
Andrés A. Garcia-Granada

Purpose The purpose of this paper is to study the Mode I fracture behavior of polycarbonate (PC) parts produced using fused deposition modeling (FDM). The focus of this study is on samples printed along the out-of-plane direction with different raster angles. Design/methodology/approach Tensile and Mode I fracture tests were conducted. Semi-circular bend specimens were used for the fracture tests, which were printed in four different raster patterns of (0/90), (15/−75) (30/−60) and (45/−45). Moreover, the finite element method (FEM) was used to determine the applicability of linear elastic fracture mechanics (LEFM) for the printed PC parts. The fracture toughness results, as well as the fracture path and the fracture surfaces, were studied to describe the fracture behavior of the samples. Findings Finite element results confirm that the use of LEFM is allowed for the tested PC samples. The fracture toughness results show that changing the direction of the printed rasters can have an effect of up to 50% on the fracture toughness of the printed parts, with the (+45/−45) and (0/90) orientations having the highest and lowest resistance to crack propagation, respectively. Moreover, except for the (0/90) orientation, the other samples have higher crack resistance compared to the bulk material. The fracture toughness of the tested PC depends more on the toughness of the printed sample, rather than its tensile strength. Originality/value The toughness and the energy absorption capability of the printed samples (with different raster patterns) were identified as the main properties affecting the fracture toughness of the AM PC parts. Because the fracture resistance of almost all the samples was higher than that of the base material, it is evident that by choosing the right raster patterns for 3D-printed parts, very high resistance to crack growth may be obtained. Also, using FEM and comparing the size of the plastic zones, it was concluded that, although the tensile curves show nonlinearity, LEFM is still applicable for the printed parts.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 263 ◽  
Author(s):  
Xinliang Li ◽  
Jiangang Guo

The fracture properties of pre-cracked monocrystalline/polycrystalline graphene were investigated via a finite element method based on molecular structure mechanics, and the mode I critical stress intensity factor (SIF) was calculated by the Griffith criterion in classical fracture mechanics. For monocrystalline graphene, the size effects of mode I fracture toughness and the influence of crack width on the mode I fracture toughness were investigated. Moreover, it was found that the ratio of crack length to graphene width has a significant influence on the mode I fracture toughness. For polycrystalline graphene, the strain energy per unit area at different positions was calculated, and the initial fracture site (near grain boundary) was deduced from the variation tendency of the strain energy per unit area. In addition, the effects of misorientation angle of the grain boundary (GB) and the distance between the crack tip and GB on mode I fracture toughness were also analyzed. It was found that the mode I fracture toughness increases with increasing misorientation angle. As the distance between the crack tip and GB increases, the mode I fracture toughness first decreases and then tends to stabilize.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Stephanie S. Luke ◽  
David Soares ◽  
Janaye V. Marshall ◽  
James Sheddden ◽  
Özgür Keleş

Purpose Fused filament fabrication of continuous-fiber-reinforced polymers is a promising technique to achieve customized high-performance composites. However, the off-axis tensile strength (TS) and Mode I fracture toughness of fused filament fabricated (FFFed) continuous-glass-fiber-reinforced (CGFR) nylon are unknown. The purpose of this paper is to investigate the mechanical and fracture behavior of FFFed CGFR nylon with various fiber content and off-axis fiber alignment. Design/methodology/approach Tensile tests were performed on FFFed CGFR-nylon with 9.5, 18.9 and 28.4 fiber vol. %. TS was tested with fiber orientations between 0∘ and 90∘ at 15∘ intervals. Double cantilever beam tests were performed to reveal the Mode I fracture toughness of FFFed composites. Findings TS increased with increasing fiber vol. % from 122 MPa at 9.5 vol. % to 291 MPa at 28 vol. %. FFFed nylon with a triangular infill resulted in 37 vol. % porosity and a TS of 12 MPa. Composite samples had 11–12 vol. % porosity. TS decreased by 78% from 291 MPa to 64 MPa for a change in fiber angle θ from 0∘ (parallel to the tensile stress) to 15∘. TS was between 27 and 17 MPa for 300 < θ < 900. Mode I fracture toughness of all the composites were lower than ∼332 J/m2. Practical implications Practical applications of FFFed continuous-fiber-reinforced (CFR) nylon should be limited to designs where tensile stresses align within 15∘ of the fiber orientation. Interlayer fracture toughness of FFFed CFR composites should be confirmed for product designs that operate under Mode I loading. Originality/value To the best of the authors’ knowledge, this is the first study showing the effects of fiber orientation on the mechanical behavior and effects of the fiber content on the Mode I fracture toughness of FFFed CGFR nylon.


2019 ◽  
Vol 135 (5) ◽  
pp. 33-41 ◽  
Author(s):  
Minami KATAOKA ◽  
Yuzo OBARA ◽  
Leona VAVRO ◽  
Kamil SOUCEK ◽  
Sang-Ho CHO ◽  
...  

2021 ◽  
Vol 96 ◽  
pp. 107122
Author(s):  
Mohamed Nasr Saleh ◽  
Nataša Z. Tomić ◽  
Aleksandar Marinković ◽  
Sofia Teixeira de Freitas

Sign in / Sign up

Export Citation Format

Share Document