An asymptotic analysis of DS/SSMA communication systems with general linear modulation and error control coding

1998 ◽  
Vol 44 (2) ◽  
pp. 870-881 ◽  
Author(s):  
T.M. Lok ◽  
J.S. Lehnert
2021 ◽  
Author(s):  
Madhusudan Kumar Sinha ◽  
arun pachai kannu

Inspired by compressive sensing principles, we propose novel error control coding techniques for communication systems. The information bits are encoded in the support and the non-zero entries of a sparse signal. By selecting a dictionary matrix with suitable dimensions, the codeword for transmission is obtained by multiplying the dictionary matrix with the sparse signal. Specifically, the codewords are obtained from the sparse linear combinations of the columns of the dictionary matrix. At the decoder, we employ variations of greedy sparse signal recovery algorithms. Using Gold code sequences and mutually unbiased bases from quantum information theory as dictionary matrices, we study the block error rate (BLER) performance of the proposed scheme in the AWGN channel. Our results show that the proposed scheme has a comparable and competitive performance with respect to the several widely used linear codes, for very small to moderate block lengths. In addition, our coding scheme extends straightforwardly to multi-user scenarios such as multiple access channel, broadcast channel, and interference channel. In these multi-user channels, if the users are grouped such that they have similar channel gains and noise levels, the overall BLER performance of our proposed scheme will coincide with an equivalent single-user scenario.


2021 ◽  
Author(s):  
Madhusudan Kumar Sinha ◽  
arun pachai kannu

Inspired by compressive sensing principles, we propose novel error control coding techniques for communication systems. The information bits are encoded in the support and the non-zero entries of a sparse signal. By selecting a dictionary matrix with suitable dimensions, the codeword for transmission is obtained by multiplying the dictionary matrix with the sparse signal. Specifically, the codewords are obtained from the sparse linear combinations of the columns of the dictionary matrix. At the decoder, we employ variations of greedy sparse signal recovery algorithms. Using Gold code sequences and mutually unbiased bases from quantum information theory as dictionary matrices, we study the block error rate (BLER) performance of the proposed scheme in the AWGN channel. Our results show that the proposed scheme has a comparable and competitive performance with respect to the several widely used linear codes, for very small to moderate block lengths. In addition, our coding scheme extends straightforwardly to multi-user scenarios such as multiple access channel, broadcast channel, and interference channel. In these multi-user channels, if the users are grouped such that they have similar channel gains and noise levels, the overall BLER performance of our proposed scheme will coincide with an equivalent single-user scenario.


Author(s):  
Reda Benkhouya ◽  
Idriss Chana ◽  
Youssef Hadi

Channel coding is commonly based on protecting information to be communicated across an unreliable medium, by adding patterns of redundancy into the transmission path. Also referred to as forward error control coding (FECC), the technique is widely used to enable correcting or at least detecting bit errors in digital communication systems. In this paper we study an original FECC known as polar coding which has proven to meet the typical use cases of the next generation mobile standard. This work is motivated by the suitability of polar codes for the new coming wireless era. Hence, we investigate the performance of polar codes in terms of bit error rate (BER) for several codeword lengths and code rates. We first perform a discrete search to find the best operating signal-to-noise ratio (SNR) at two different code rates, while varying the blocklength. We find in our extensive simulations that the BER becomes more sensitive to operating SNR (OSNR) as long as we increase the blocklength and code rate. Finally, we note that increasing blocklength achieves an SNR gain, while increasing code rate changes the OSNR domain. This trade-off sorted out must be taken into consideration while designing polar codes for high-throughput application.


Sign in / Sign up

Export Citation Format

Share Document