Observations of ship-generated internal waves in SAR images from Loch Linnhe, Scotland, and comparison with theory and in situ internal wave measurements

1996 ◽  
Vol 34 (2) ◽  
pp. 532-542 ◽  
Author(s):  
G.G. Hogan ◽  
R.D. Chapman ◽  
G. Watson ◽  
D.R. Thompson
1983 ◽  
Vol 18 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Mark K. Watson ◽  
R.R. Hudgins ◽  
P.L. Silveston

Abstract Internal wave motion was studied in a laboratory rectangular, primary clarifier. A photo-extinction device was used as a turbidimeter to measure concentration fluctuations in a small volume within the clarifier as a function of time. The signal from this device was fed to a HP21MX minicomputer and the power spectrum plotted from data records lasting approximately 30 min. Results show large changes of wave amplitude as frequency increases. Two distinct regions occur: one with high amplitudes at frequencies below 0.03 Hz, the second with very small amplitudes appears for frequencies greater than 0.1 Hz. The former is associated with internal waves, the latter with flow-generated turbulence. Depth, velocity in the clarifier and inlet suspended solids influence wave amplitudes and the spectra. A variation with position or orientation of the probe was not detected. Contradictory results were found for the influence of flow contraction baffles on internal wave amplitude.


2013 ◽  
Vol 441 ◽  
pp. 388-392
Author(s):  
Xiao Yong Li ◽  
Jing Wang ◽  
Mei Ling Sun ◽  
Rui Ling Ma ◽  
Jun Min Meng

We established a deep-sea internal wave detection model based on the nonlinear Schrödinger (NLS) equation and Synthetic Aperture Radar (SAR) images, and applied the model to the Malin Shelf edge, located at UK Continental Shelf, west of Scotland, to retrieve internal wave parameters. We selected the SAR images of internal waves at Malin Shelf edge, combined NLS equation with the action spectrum balance equation and Bragg scattering model, retrieved the amplitudes and phase velocities of the internal waves at Malin Shelf edge, and compared these data with those retrieved by the model based on KdV equation and those observed at the same period. The results show that the error between the data retrieved by our model and the measured data is very small, while the difference between the data retrieved by the detection model based on KdV equation and the measured data is significant. In addition, the phase velocities, calculated in our model and the model based on KdV equation, are both close to the measured data. Consequently, our model is valid and more accurate for the parameter inversion of internal waves in deep-sea area.


2019 ◽  
Vol 49 (9) ◽  
pp. 2271-2289 ◽  
Author(s):  
Jörn Callies ◽  
Weiguang Wu

AbstractIn anticipation of the Surface Water and Ocean Topography (SWOT) wide-swath altimetry mission, this study reviews expectations for sea surface height (SSH) variance spectra at wavelengths of 10–100 km. Kinetic energy spectra from in situ observations and numerical simulations indicate that SSH variance spectra associated with balanced flow drop off steeply with wavenumber, with at least the negative fourth power of the wavenumber. Such a steep drop-off implies that even drastic reductions in altimetry noise yield only a modest improvement in the resolution of balanced flow. This general expectation is made concrete by extrapolating SSH variance spectra from existing altimetry to submesoscales, the results of which suggest that in the extratropics (poleward of 20° latitude) SWOT will improve the resolution from currently about 100 km to a median of 51 or 74 km, depending on whether or not submesoscale balanced flows are energetic. Internal waves, in contrast to balanced flow, give rise to SSH variance spectra that drop off relatively gently with wavenumber, so SSH variance should become strongly dominated by internal waves in the submesoscale range. In situ observations of the internal-wave field suggest that the internal-wave signal accessible by SWOT will be largely dominated by internal tides. The internal-wave continuum is estimated to have a spectral level close to but somewhat lower than SWOT’s expected noise level.


2014 ◽  
Vol 31 (3) ◽  
pp. 714-728 ◽  
Author(s):  
Sutara H. Suanda ◽  
John A. Barth ◽  
Rob A. Holman ◽  
John Stanley

Abstract Shore-based video remote sensing is used to observe and continually monitor nonlinear internal waves propagating across the inner shelf. Month-long measurements of velocity from bottom-mounted acoustic Doppler current profilers and temperature from thermistor chains at the 10- and 20-m isobaths are combined with sea surface imagery from a suite of cameras (Argus) to provide a kinematic description of 11 borelike internal waves as they propagate across the central Oregon inner shelf. The surface expression of these waves, commonly seen by eye as alternating rough and smooth bands, are identified by increased pixel intensity in Argus imagery (average width 39 ± 6 m), caused by the convergence of internal wave-driven surface currents. These features are tracked through time and space using 2-min time exposure images and then compared to wave propagation speed and direction from in situ measurements. Internal waves are refracted by bathymetry, and the measured wave speed (~0.15 m s−1) is higher than predicted by linear theory (<0.1 m s−1). Propagating internal waves are also visible in subsampled Argus pixel time series (hourly collections of 17 min worth of 2-Hz pixel intensity from a subset of locations), thus extending the observational record to times without an in situ presence. Results from this 5-month record show that the preferred sea state for successful video observations occurs for wind speeds of 2–5 m s−1. Continued video measurements and analysis of extensive existing Argus data will allow a statistical estimate of internal wave occurrence at a variety of inner-shelf locations.


2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


2012 ◽  
Vol 695 ◽  
pp. 341-365 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Xiaoming Wang

AbstractIn this paper, a multi-layer model is developed for the purpose of studying nonlinear internal wave propagation in shallow water. The methodology employed in constructing the multi-layer model is similar to that used in deriving Boussinesq-type equations for surface gravity waves. It can also be viewed as an extension of the two-layer model developed by Choi & Camassa. The multi-layer model approximates the continuous density stratification by an $N$-layer fluid system in which a constant density is assumed in each layer. This allows the model to investigate higher-mode internal waves. Furthermore, the model is capable of simulating large-amplitude internal waves up to the breaking point. However, the model is limited by the assumption that the total water depth is shallow in comparison with the wavelength of interest. Furthermore, the vertical vorticity must vanish, while the horizontal vorticity components are weak. Numerical examples for strongly nonlinear waves are compared with laboratory data and other numerical studies in a two-layer fluid system. Good agreement is observed. The generation and propagation of mode-1 and mode-2 internal waves and their interactions with bottom topography are also investigated.


Sign in / Sign up

Export Citation Format

Share Document